95 research outputs found

    Effects of L1-ORF2 fragments on green fluorescent protein gene expression

    Get PDF
    The retrotransposon known as long interspersed nuclear element-1 (L1) is 6 kb long, although most L1s in mammalian and other eukaryotic cells are truncated. L1 contains two open reading frames, ORF1 and ORF2, that code for an RNA-binding protein and a protein with endonuclease and reverse transcriptase activities, respectively. In this work, we examined the effects of full length L1-ORF2 and ORF2 fragments on green fluorescent protein gene (GFP) expression when inserted into the pEGFP-C1 vector downstream of GFP. All of the ORF2 fragments in sense orientation inhibited GFP expression more than when in antisense orientation, which suggests that small ORF2 fragments contribute to the distinct inhibitory effects of this ORF on gene expression. These results provide the first evidence that different 280-bp fragments have distinct effects on the termination of gene transcription, and that when inserted in the antisense direction, fragment 280-9 (the 3' end fragment of ORF2) induces premature termination of transcription that is consistent with the effect of ORF2

    Engineering CAR T Cells to Target the HIV Reservoir.

    No full text

    A Flow Cytometric Method to Determine Transfection Efficiency.

    No full text

    Targeting autophagy to treat HIV immune dysfunction

    No full text
    Chronic immune activation and inflammation are hallmarks of Human Immunodeficiency Virus-1 (HIV-1) pathogenesis. Therefore, approaches to safely reduce systematic inflammation are essential to improve immune responses and thus slow or prevent HIV progression. Autophagy is a cellular mechanism for the disposal of damaged organelles and elimination of intracellular pathogens. It is not only vital for energy homeostasis, but also plays a critical role in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Our study demonstrated that impairment of autophagy leads to spontaneous type I-Interferons (IFN-I) signaling, while autophagy induction reduces IFN-I signaling in macrophages. Importantly, we demonstrated that in vivo treatment of autophagy inducer rapamycin in chronically HIV infected humanized mice decreased chronic IFN-I signaling, improved exhausted anti-viral T cell function, and reduced viral loads. Taken together, our study supports the therapeutic potential of rapamycin and potentially other autophagy inducers in alleviating HIV-1 immunopathogenesis and improving anti-viral T cell responses

    Adaptive Two-Step Filter with Applications to Bearings-Only Measurement Problem

    No full text

    Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection

    No full text
    Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies

    Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection

    No full text
    Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies
    corecore