49 research outputs found

    Three-state disk model for high quality and energy efficient streaming media servers

    Get PDF
    Energy conservation and emission reduction is an increasingly prominent and global issue in green computing. Among the various components of a streaming media server, the storage system is the biggest power consumer. In this paper, a Three-State Disk Model (3SDM) is proposed to conserve energy for streaming media servers without losing quality. According to the load threshold, the disks are dynamically divided into three states: overload, normal and standby. With the requests arriving and departing, the disk state transition among these three states. The purpose of 3SDM is to skew the load among the disks to achieve high quality and energy efficiency for streaming media applications. The load of disks in overload state will move to disks in normal state to improve the quality of service (QoS) level. The load of disks in normal state will be packed together to switch some disks into standby state to save energy. The key problem here is to identify the blocks that need migrating among disks. A sliding window replacement (SWR) algorithm is developed for this purpose, which calculates the block weight based on the request frequency falling within the window of a block. Employing a validated simulator, this paper evaluates the SWR algorithm for conventional disks based on the proposed 3SDM model. The results show that this scheme is able to yield energy efficient streaming media servers

    Priori information and sliding window based prediction algorithm for energy-efficient storage systems in cloud

    Get PDF
    One of the major challenges in cloud computing and data centers is the energy conservation and emission reduction. Accurate prediction algorithms are essential for building energy efficient storage systems in cloud computing. In this paper, we first propose a Three-State Disk Model (3SDM), which can describe the service quality and energy consumption states of a storage system accurately. Based on this model, we develop a method for achieving energy conservation without losing quality by skewing the workload among the disks to transmit the disk states of a storage system. The efficiency of this method is highly dependent on the accuracy of the information predicting the blocks to be accessed and the blocks not be accessed in the near future. We develop a priori information and sliding window based prediction (PISWP) algorithm by taking advantage of the priori information about human behavior and selecting suitable size of sliding window. The PISWP method targets at streaming media applications, but we also check its efficiency on other two applications, news in webpage and new tool released. Disksim, an established storage system simulator, is applied in our experiments to verify the effect of our method for various users’ traces. The results show that this prediction method can bring a high degree energy saving for storage systems in cloud computing environment

    Erosion-deposition patterns and depo-center movements in branching channels at the near-estuary reach of the Yangtze River

    Get PDF
    Channel evolution and depo-center migrations in braided reaches are significantly influenced by variations in runoff. This study examines the effect of runoff variations on the erosion-deposition patterns and depocenter movements within branching channels of the near-estuary reach of the Yangtze River. We assume that variations in annual mean duration days of runoff discharges, ebb partition ratios in branching channels, and the erosional/depositional rates of entire channels and sub-reaches are representative of variations in runoff intensity, flow dynamics in branching channels, and morphological features in the channels. Our results show that the north region of Fujiangsha Waterway, the Liuhaisha branch of Rugaosha Waterway, the west branch of Tongzhousha Waterway, and the west branch of Langshansha Waterway experience deposition or reduced erosion under low runoff intensity, and erosion or reduced deposition under high runoff intensity, with the depocenters moving upstream and downstream, respectively. Other waterway branches undergo opposite trends in erosion-deposition patterns and depo-center movements as the runoff changes. These morphological changes may be associated with trends in ebb partition ratio as the runoff discharge rises and falls. By flattening the intra-annual distribution of runoff discharge, dam construction in the Yangtze Basin has altered the ebb partition ratios in waterway branches, affecting their erosion-deposition patterns and depo-center movements. Present trends are likely to continue into the future due to the succession of large cascade dams under construction along the upper Yangtze and ongoing climate change

    High quality and wafer-scale cubic silicon carbide single crystals

    Full text link
    Silicon carbide (SiC) is an important semiconductor material for fabricating power electronic devices that exhibit higher switch frequency, lower energy loss and substantial reduction both in size and weight in comparison with its Si-based counterparts1-4. Currently, most devices, such as metal-oxide-semiconductor field effect transistors, which are core devices used in electric vehicles, photovoltaic industry and other applications, are fabricated on a hexagonal polytype 4H-SiC because of its commercial availability5. Cubic silicon carbide (3C-SiC), the only cubic polytype, has a moderate band gap of 2.36 eV at room-temperature, but a superior mobility and thermal conduction than 4H-SiC4,6-11. Moreover, the much lower concentration of interfacial traps between insulating oxide gate and 3C-SiC helps fabricate reliable and long-life devices7-10,12-14. The growth of 3C-SiC crystals, however, has remained a challenge up to now despite of decades-long efforts by researchers because of its easy transformation into other polytypes during growth15-19, limiting the 3C-SiC based devices. Here, we report that 3C-SiC can be made thermodynamically favored from nucleation to growth on a 4H-SiC substrate by top-seeded solution growth technique(TSSG), beyond what's expected by classic nucleation theory. This enables the steady growth of quality and large sized 3C-SiC crystals (2~4-inch in diameter and 4.0~10.0 mm in thickness) sustainable. Our findings broaden the mechanism of hetero-seed crystal growth and provide a feasible route to mass production of 3C-SiC crystals,offering new opportunities to develop power electronic devices potentially with better performances than those based on 4H-SiC.Comment: 17 pages, 4 figure

    Preliminary study of relationships between hypnotic susceptibility and personality disorder functioning styles in healthy volunteers and personality disorder patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypnotic susceptibility is one of the stable characteristics of individuals, but not closely related to the personality traits such as those measured by the five-factor model in the general population. Whether it is related to the personality disorder functioning styles remains unanswered.</p> <p>Methods</p> <p>In 77 patients with personality disorders and 154 healthy volunteers, we administered the Stanford Hypnotic Susceptibility Scale: Form C (SHSSC) and the Parker Personality Measure (PERM) tests.</p> <p>Results</p> <p>Patients with personality disorders showed higher passing rates on SHSSC Dream and Posthypnotic Amnesia items. No significant correlation was found in healthy volunteers. In the patients however, SHSSC Taste hallucination (ÎČ = 0.26) and Anosmia to Ammonia (ÎČ = -0.23) were significantly correlated with the PERM Borderline style; SHSSC Posthypnotic Amnesia was correlated with the PERM Schizoid style (ÎČ = 0.25) but negatively the PERM Narcissistic style (ÎČ = -0.23).</p> <p>Conclusions</p> <p>Our results provide limited evidence that could help to understand the abnormal cognitions in personality disorders, such as their hallucination and memory distortions.</p

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Does the Impact of Carbon Price Determinants Change with the Different Quantiles of Carbon Prices? Evidence from China ETS Pilots

    No full text
    Since carbon price volatility is critical to the risk management of the CO2 emissions trading market, research has focused on energy prices and macroeconomic drivers which cause changes in carbon prices and make the carbon market more volatile than other markets. However, they have ignored whether the impact of carbon price determinants changes when the carbon price is at different levels. To fill this gap, this paper applies a semiparametric quantile regression model to explore the effects of energy prices and macroeconomic drivers on carbon prices at different quantiles. The model combines the advantages of parameter estimation, nonparametric estimation and quantile regression to describe the nonlinear relationship between carbon price and its fundamentals, which do not need to make any assumptions about the random error. Carbon prices are high&ndash;tailed and exhibit higher kurtosis, the traditional models which tend to assume that data are normally distributed can&rsquo;t perform well. Furthermore, the semiparametric model doesn&rsquo;t need to assume that the data are normally distributed. Therefore, the semiparametric model can effectively model the data. Some new evidence from China&rsquo;s emission trading scheme (ETS) pilots shows that energy prices and macroeconomic drivers have different effects on carbon prices at high or low quantiles. First, the negative impact of coal prices on carbon prices was greater at the lower quantile of carbon prices in the Shenzhen ETS pilot. However, the effects of coal prices were positive in the Beijing ETS pilot, which may be attributed to great demand for coal. Second, oil prices had greater negative effects on carbon prices at higher quantiles in Beijing and Hubei ETS pilots. This can be attributed to the fact that businesses use less oil when carbon prices are high. For the Shenzhen ETS pilot, the effects of oil prices were positive. Third, natural gas prices have a stronger effect on carbon prices as quantiles increased in the Beijing and Hubei ETS pilots. Lastly, the effects of macroeconomic drivers on carbon prices at low quantiles were stronger in the Shenzhen ETS pilots and higher at the medium quantiles in Beijing and Hubei ETS pilots. These findings suggest that the impact of determinants on the carbon prices at different levels is not constant. Ignoring this issue will lead to a missed warning about the risks of the carbon market. This study will be of positive significance for China&rsquo;s emission trading scheme (ETS) pilots, in order to accurately monitor the effects of carbon prices determinants and effectively avoid carbon market risks

    A Hybrid Forecasting Model for Nonstationary and Nonlinear Time Series in the Stochastic Process of CO2 Emission Trading Price Fluctuation

    No full text
    Predicting CO2 emission prices is an important and challenging task for policy makers and market participants, as carbon prices follow a stochastic process of complex time series with nonstationary and nonlinear characteristics. Existing literature has focused on highly precise point forecasting, but it cannot correctly solve the uncertainties related to carbon price datasets in most cases. This study aims to develop a hybrid forecasting model to estimate in advance the maximum or minimum loss in the stochastic process of CO2 emission trading price fluctuation. This model can granulate raw data into fuzzy-information granular components with minimum (Low), average (R), and maximum (Up) values as changing space-description parameters. Furthermore, it can forecast carbon prices’ changing space with Low, R, and Up as inputs to support a vector regression. This method’s feasibility and effectiveness is examined using empirical experiments on European Union allowances’ spot and futures prices under the European Union’s Emissions Trading Scheme. The proposed FIG-SVM model exhibits fewer errors and superior performance than ARIMA, ARFIMA, and Markov-switching methods. This study provides several important implications for investors and risk managers involved in trading carbon financial products
    corecore