3 research outputs found

    Synthesis of 6-Alkynylated Purine-Containing DNA via On-Column Sonogashira Coupling and Investigation of Their Base-Pairing Properties

    No full text
    Synthetic unnatural base pairs have been proven to be attractive tools for the development of DNA-based biotechnology. Our group has very recently reported on alkynylated purine–pyridazine pairs, which exhibit selective and stable base-pairing via hydrogen bond formation between pseudo-nucleobases in the major groove of duplex DNA. In this study, we attempted to develop an on-column synthesis methodology of oligodeoxynucleotides (ODNs) containing alkynylated purine derivatives to systematically explore the relationship between the structure and the corresponding base-pairing ability. Through Sonogashira coupling of the ethynyl pseudo-nucleobases and CPG-bound ODNs containing 6-iodopurine, we have demonstrated the synthesis of the ODNs containing three NPu derivatives (NPu1, NPu2, NPu3) as well as three OPu derivatives (OPu1, OPu2, OPu3). The base-pairing properties of each alkynylated purine derivative revealed that the structures of pseudo-nucleobases influence the base pair stability and selectivity. Notably, we found that OPu1 bearing 2-pyrimidinone exhibits higher stability to the complementary NPz than the original OPu, thereby demonstrating the potential of the on-column strategy for convenient screening of the alkynylated purine derivatives with superior pairing ability

    Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma.

    No full text
    Brain metastasis (BM) is a major complication of lung adenocarcinoma (LAD). An investigation of the pathogenic mechanisms of BM, as well as the identification of appropriate molecular markers, is necessary. The aim of this study was to determine the expression patterns of microRNAs (miRNAs) in LAD with BM, and to investigate the biological role of these miRNAs during tumorigenesis. miRNA array profiles were used to identify BM-associated miRNAs. These miRNAs were independently validated in 155 LAD patients. Several in vivo and in vitro assays were performed to verify the effects of miRNAs on BM. We identified six miRNAs differentially expressed in patients with BM as compared to patients with BM. Of these, miR-4270 and miR-423-3p were further investigated. miR-4270 and miR-423-3p directly targeted MMP19 and P21, respectively, to influence cell viability, migration, and colony formation in vitro. miR-4270 downregulation and miR-423-3p upregulation was associated with an increased risk of BM in LAD patients. Thus, our results suggested that miR-4270 and miR-423-3p might play an important role in BM pathogenesis in LAD patients, and that these miRNAs might be useful prognostic and clinical treatment targets
    corecore