342 research outputs found

    Query and Output: Generating Words by Querying Distributed Word Representations for Paraphrase Generation

    Full text link
    Most recent approaches use the sequence-to-sequence model for paraphrase generation. The existing sequence-to-sequence model tends to memorize the words and the patterns in the training dataset instead of learning the meaning of the words. Therefore, the generated sentences are often grammatically correct but semantically improper. In this work, we introduce a novel model based on the encoder-decoder framework, called Word Embedding Attention Network (WEAN). Our proposed model generates the words by querying distributed word representations (i.e. neural word embeddings), hoping to capturing the meaning of the according words. Following previous work, we evaluate our model on two paraphrase-oriented tasks, namely text simplification and short text abstractive summarization. Experimental results show that our model outperforms the sequence-to-sequence baseline by the BLEU score of 6.3 and 5.5 on two English text simplification datasets, and the ROUGE-2 F1 score of 5.7 on a Chinese summarization dataset. Moreover, our model achieves state-of-the-art performances on these three benchmark datasets.Comment: arXiv admin note: text overlap with arXiv:1710.0231

    FR-ResNet s for Insect Pest Recognition

    Get PDF
    Insect pests are one of the main threats to the commercially important crops. An effective insect pest recognition method can avoid economic losses. In this paper, we proposed a new and simple structure based on the original residual block and named as feature reuse residual block which combines feature from the input signal of a residual block with the residual signal. In each feature reuse residual block, it enhances the capacity of representation by learning half and reuse half feature. By stacking the feature reuse residual block, we obtained the feature reuse residual network (FR-ResNet) and evaluated the performance on IP102 benchmark dataset. The experimental results showed that FR-ResNet can achieve significant performance improvement in terms of insect pest classification. Moreover, to demonstrate the adaptive of our approach, we applied it to various kinds of residual networks, including ResNet, Pre-ResNet, and WRN, and we tested the performance on a series of benchmark datasets: CIFAR-10, CIFAR-100, and SVHN. The experimental results showed that the performance can be improved obviously than original networks. Based on these experiments on CIFAR-10, CIFAR-100, SVHN, and IP102 benchmark datasets, it demonstrates the effectiveness of our approach

    Deep Multibranch Fusion Residual Network for Insect Pest Recognition

    Get PDF
    Earlier insect pest recognition is one of the critical factors for agricultural yield. Thus, an effective method to recognize the category of insect pests has become significant issues in the agricultural field. In this paper, we proposed a new residual block to learn multi-scale representation. In each block, it contains three branches: one is parameter-free, and the others contain several successive convolution layers. Moreover, we proposed a module and embedded it into the new residual block to recalibrate the channel-wise feature response and to model the relationship of the three branches. By stacking this kind of block, we constructed the Deep Multi-branch Fusion Residual Network (DMF-ResNet). For evaluating the model performance, we first test our model on CIFAR-10 and CIFAR-100 benchmark datasets. The experimental results show that DMF-ResNet outperforms the baseline models significantly. Then, we construct DMF-ResNet with different depths for high-resolution image classification tasks and apply it to recognize insect pests. We evaluate the model performance on the IP102 dataset, and the experimental results show that DMF-ResNet could achieve the best accuracy performance than the baseline models and other state-of-art methods. Based on these empirical experiments, we demonstrate the effectiveness of our approach

    DFF-ResNet : An Insect Pest Recognition Model Based on Residual Networks

    Get PDF
    Insect pest control is considered as a significant factor in the yield of commercial crops. Thus, to avoid economic losses, we need a valid method for insect pest recognition. In this paper, we proposed a feature fusion residual block to perform the insect pest recognition task. Based on the original residual block, we fused the feature from a previous layer between two 1×1 convolution layers in a residual signal branch to improve the capacity of the block. Furthermore, we explored the contribution of each residual group to the model performance. We found that adding the residual blocks of earlier residual groups promotes the model performance significantly, which improves the capacity of generalization of the model. By stacking the feature fusion residual block, we constructed the Deep Feature Fusion Residual Network (DFF-ResNet). To prove the validity and adaptivity of our approach, we constructed it with two common residual networks (Pre-ResNet and Wide Residual Network (WRN)) and validated these models on the Canadian Institute For Advanced Research (CIFAR) and Street View House Number (SVHN) benchmark datasets. The experimental results indicate that our models have a lower test error than those of baseline models. Then, we applied our models to recognize insect pests and obtained validity on the IP102 benchmark dataset. The experimental results show that our models outperform the original ResNet and other state-of-the-art methods

    Lee-Yang Zeros of a Bosonic system associated with a single trapped ion

    Full text link
    Zeros of partition functions, in particular Lee-Yang zeros, in a complex plane provide important information for understanding phase transitions. A recent discovery on the equivalence between the coherence of a central quantum system and the partition function of the environment in the complex plane enabled the experimental study of Lee-Yang zeros, with several pioneering experiments on spin systems. Lee-Yang zeros have not been observed in Bosonic systems. Here we propose an experimental scheme to demonstrate Lee-Yang zeros in Bosonic systems associated with a single trapped ion by introducing strong coupling between the spin and motion degrees of freedom, i.e. beyond the weak coupling Lamb-Dicke regime. Our scheme provides new possibilities for quantum simulation of the thermodynamics of Bosonic systems in the complex plane.Comment: 6 pages,6 figure

    Slicing Recognition of Aircraft Integral Panel Generalized Pocket

    Get PDF
    AbstractTo automatically obtain a machining area in numerical control (NC) programming, a data model of generalized pocket is established by analyzing aircraft integral panel characteristics, and a feature recognition approach is proposed. First, by reference to the practical slice-machining process of an aircraft integral panel, both the part and the blank are sliced in the Z-axis direction; hence a feature profile is created according to the slicing planes and the contours are formed by the intersection of the slicing planes with the part and its blank. Second, the auxiliary features of the generalized pocket are also determined based on the face type and the position, to correct the profile of the pocket. Finally, the generalized pocket feature relationship tree is constructed by matching the vertical relationships among the features. Machining feature information produced by using this method can be directly used to calculate the cutter path. The validity and practicability of the method is verified by NC programming for aircraft panels
    • …
    corecore