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Abstract—Earlier insect pest recognition is one of the critical 

factors for agricultural yield. Thus, an effective method to 

recognize the category of insect pests has become significant issues 

in the agricultural field. In this paper, we proposed a new residual 

block to learn multi-scale representation. In each block, it contains 

three branches: one is parameter-free, and the others contain 

several successive convolution layers. Moreover, we proposed a 

module and embedded it into the new residual block to recalibrate 

the channel-wise feature response and to model the relationship of 

the three branches. By stacking this kind of block, we constructed 

the Deep Multi-branch Fusion Residual Network (DMF-ResNet). 

For evaluating the model performance, we first test our model on 

CIFAR-10 and CIFAR-100 benchmark datasets. The 

experimental results show that DMF-ResNet outperforms the 

baseline models significantly. Then, we construct DMF-ResNet 

with different depths for high-resolution image classification tasks 

and apply it to recognize insect pests. We evaluate the model 

performance on the IP102 dataset, and the experimental results 

show that DMF-ResNet could achieve the best accuracy 

performance than the baseline models and other state-of-art 

methods. Based on these empirical experiments, we demonstrate 

the effectiveness of our approach. 

Index Terms—Multi-branch Fusion, Insect pest recognition, 

image classification. 

I. INTRODUCTION

N the agricultural field, insect pest control has always been

one of the critical issues for agricultural productivity for 

decades. Therefore, seeking an effective method to recognize 

the category of insect pests will be helpful for early detection 

and disposal, which can decrease the damage. In the world, 

there are millions of pest species and the subtle differences 

among species making pest recognition becoming one of the 

significant challenges in agriculture pest manual management. 

In the case of traditional insect pest recognition, it relies on 

agriculture experts heavily, which is highly expensive and time-

consuming. With the development of machine learning and 

deep learning techniques, many works focus on transferring 

these technologies to the insect pest recognition task [1]-[5]. 

Deep learning, especially for computer vision, has been 

successfully applied in various domains (e.g., image 

classification, object detection, and segmentation). Researchers 

proposed many excellent models, which achieved state-of-art 
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performance in benchmark datasets. These models are also 

applied to address our daily life problems and bring 

convenience to us [6]-[9]. In 2015, residual networks (ResNets) 

[10], as a popular convolutional neural network now, achieved 

the 1st place in several visual tasks, including image 

classification, object detection, and segmentation. It can be 

implemented exceeding 1000+ layers with a nice convergence 

behavior. In order to address the degradation problem, K. He et 

al. [11] proposed the Pre-activation ResNet. Meanwhile, in 

GoogleNet [12], it fuses multi-scale features from different 

branches to construct effective models. Thus, learning multi-

scale representation is also considered as one of the effective 

methods to improve model performance. 

The development of deep learning relies on large-scale image 

datasets massively. It is well known that the ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) [13] had 

significantly improved the development of computer vision. 

Therefore, a large-scale image dataset on a specific domain is 

essential. In IP102 [1], it released a large-scale dataset for insect 

pest recognition. To recognize insect pests more effectively, we 

hypothesis that fusing the feature from different scales can 

enhance the model performance. Based on this hypothesis, we 

proposed a new convolutional neural network to perform insect 

pest recognition task based on ResNet, Pre-ResNet, and multi-

scale representation fusion method. Thus, we use ResNet and 

Pre-ResNet as our baseline models. 

In ResNet [10], it proposed two types of residual 

architecture: basic and deeper bottleneck architectures. 

Meanwhile, Pre-ResNet [11] modified the building of residual 

architectures by changing the order of Conv-Bn-Relu to Bn-

Relu-Conv and regarding the identity mapping as the skip 

connection and after-addition activation, as shown in Fig. 1(a) 

and (b). Therefore, to learn multi-scale representation, we 

combined the two residual architectures with a parameter-free 

branch together, as shown in Fig. 1(c). To fusion the multi-scale 

representation more effectively, we added two 1×1 convolution 

layer. One is used to optimize and balance the input feature 

from three branches; the other is used to reduce the feature map 

dimension after feature concatenation operation. We named this 

block as multi-branch fusion residual block. Moreover, we 

proposed a module to recalibrate the channel-wise feature 

response and to model the relationship between the three 
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branches. This module realized this purpose by three operations 

– Squeeze, Fuse, and Recalibrate. Thus, we named it as SFR 

module, as shown in Fig. 1(c). Then, we embedded the SFR 

module into the multi-branch fusion residual block to enhance 

its capacity. The SFR module actualized its function by the 

following steps. First, we used a global pooling layer on each 

branch to squeeze global spatial information and generate 

channel-wise statistics. Second, we concatenated the squeezed 

information and reshaped the matrix. Then a 3×3 convolutional 

kernel scanned the matrix to improve the non-linear 

representation capability. Third, the result is flatted and pass 

through a fully connected (FC) layer with dimensionality-

reduction and relu function. Then the output is connected to 

three FC layers, which of channel dimensions are increased to 

match each branch. Last, the final output of the three FC layers 

is applied to each branch. 

By stacking the multi-branch fusion residual block, we 

obtained the Deep Multi-branch Fusion Residual Network 

(DMF-ResNet). In order to evaluate the model performance, we 

first tested the test error performance on CIFAR-10 and 

CIFAR-100 datasets. The experimental results supported that 

our approach could improve the capacity of the model. Mean-

while, to explore the characteristics of DMF-ResNet, we also 

evaluated the impact of depth and width for our models. The 

empirical experiments demonstrated the model performance 

could be improved when increasing the model depth or width. 

Even for extremely deep DMF-ResNet, it can achieve 

compelling test error performance. Besides, we constructed 

some ablation experiments to verify the effectiveness of multi-

scale representation learning and SFR module, respectively. 

The results indicated that the multi-scale representation 

learning could bring benefits to our model, and the SFR module 

could recalibrate channel-wise feature response and model the 

relationship of three branches. Then, we applied our model to 

recognize insect pests. We constructed DMF-ResNet with 

different depths for high-resolution image classification tasks 

and tested the model performance on IP102 dataset. The 

experimental results showed that our model not only had higher 

test accuracy than ResNet and Pre-ResNet with fewer 

parameters but also outperformed other state-of-art methods. 

Based on these empirical experiments on CIFAR and IP102 

datasets, we demonstrated the effectiveness of our approach. 

Thus, it also verified that learning multi-scale representation 

and modeling the relationship of different scales can enrich the 

extracted feature to improve the capacity of image classification. 

The main contributions are summarized as follows: 

1) To enrich the extracted feature for the classification task, 

we proposed a multi-branch fusion residual architecture to 

learn multi-scale representation. The experimental results 

indicate that our approach can enhance model performance 

effectively.  

2) To further enhance the capacity of our model, we proposed 

the SFR module. It can be embedded into multi-branch 

fusion residual architecture to recalibrate channel-wise 

feature response and to model the relationship of three 

branches. 

The rest of the paper is arranged as follows. Section II is a 

literature review that introduces the related works for the 

development of insect pest recognition, deep convolutional 

neural networks, and attention mechanism in CNNs. Section III 

introduces our methodology and some critical principles of our 

approach. Section IV introduces the experimental results and 

analysis on CIFAR and IP102 datasets. Section V presents 

some discussions. Section VI concludes this paper. 

 

II. RELATED WORK 

We will review some related works in this section. First, we 

present the development of insect pest recognition. Then, the 

deep convolutional neural networks and some attention 

 
Fig. 1. Different residual block used in this paper. 
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mechanism works in CNNs are presented. 

A. Development of insect pest recognition 

For the traditional insect pest recognition task, the primary 

solutions are based on the handcrafted feature, such as SIFT 

[14], HOG [15]. These methods obtain a good result on the low-

level feature representations, including color, edge, and texture. 

However, because of lacking high-level semantic information 

representation ability, the handcrafted methods can not reach 

satisfactory results. In recent years, deep learning methods 

attracted more attention in the research community. Many great 

convolution neural networks, including VGG [16], ResNet [10], 

and GoogleNet [12], are proposed and achieve state-of-art 

results on large-scale benchmark datasets, which exceed the 

handcrafted methods significantly. The successful application 

in other domains also facilitated the development of insect 

recognition. To solve the problem of pests’ different scales and 

attitudes, R. Li et al. [2] proposed an valid data augmentation 

strategy for CNN-based models. To detect and classify eight 

insects, K. Dimililer and S. Zarrouk [3] proposed a two-stages 

method depended on neural networks. Liu et al. [4] released 

their dataset consisting of about 5,000 training images in 12 

categories of paddy field pests and trained a deep CNN model 

on this dataset. Through reusing the feature in each residual 

block, F. Ren et al. [5] proposed the FR-ResNet to classify 

insect pests. Meanwhile, a large-scale dataset will promote the 

development of insect pest recognition. X. Wu et al. [1] 

collected a large-scale dataset called IP102 for insect pest 

recognition, which consists of more than 75,000 images in 102 

classes. 

B. Deep convolutional neural networks 

Many excellent convolutional neural networks are emerged in 

recent years, including VGGNet [16], NiN [17], ResNet [10], 

GoogLeNet [12], DesnseNet [18], and NASNet [19] etc. Some 

of these works focus on constructing more deeper models to 

enhance model performance. By introducing a shortcut 

conception, ResNet [10] can propagate information in the entire 

network smoother. Thus, ResNet can be implemented with 

exceeding 1000+ layers and still have nice convergence 

behaviors and compelling accuracy on many classification tasks. 

Besides, ResNet proposed a deeper bottleneck architecture, 

which can construct a thiner and deeper model than basic 

architecture for high-resolution image tasks. However, the 

degradation problem appeared in extremely deep ResNet. To 

address this problem, Pre-ResNet [11] regarded the identity 

mapping as the skip connection and after-addition activation, 

and the author converted the order of Conv-Bn-Relu to Bn-

Relu-Conv. The weighted residual network [20] solved the 

issue of incompatibility between ReLU and element-wise 

addition to eliminating the degradation problem. More and 

more deep residual network variants emerged. Instead of 

sharply increasing the feature map dimension at down-sampling 

block, D. Han et al. [21] proposed the Pyramid Residual 

Network by increasing the feature map dimension gradually in 

the entire network. G. Huang et al. [22] proposed the stochastic 

depth training method for ResNet variant networks, which 

reduces training time substantially and improves the test error 

significantly. To further dig the optimization ability of Residual 

networks, K. Zhang et al [23] proposed the RoR to optimize 

original residual mapping. All these models form a deep 

residual-networks family. Meanwhile, some other works focus 

on enriching the feature representation to improve model 

performance. GoogLeNet [12] enhanced the model 

performance by concatenating the feature map from several 

branches with three different sizes of filters (1×1, 3×3, 5×5). 

This method had been demonstrated that it could achieve high 

accuracy performance on several benchmark datasets. Then, 

several enhanced edition models based on GoogLeNet are 

proposed, including Inception-v2 [24], Inception-v3 [25], and 

Inception-v4 [26]. Besides, Z. Wang [27] proposed a multi-

scale module to the acquisition of complex breast features in a 

single image. Inspired by linear dynamical systems, D. 

Anastasios et al. [28] proposed LDS-ResNet, which 

outperformed several extensions of the original network on 

several benchmark datasets. Therefore, learning the multi-scale 

representation is also deemed as a valid method to enhance 

model performance. 

C. Attention mechanism in CNNs 

Attention mechanism has been approved their effectiveness 

in many tasks, including sequence learning [29], [30], 

localization [31], [32], and image captioning [33] etc. 

Meanwhile, soft attention can be trained end-to-end for 

convolutional neural networks. Therefore, some works 

combined the soft attention method with the existing models in 

an innovative way to construct new models. Wang et al. [34] 

proposed the attention residual learning, which helped to train 

very deep residual attention networks. They used the mixed 

attention to capture different types of attention guiding feature 

learning and encoded top-down attention mechanism into 

trunk-and-mask architecture based on hourglass modules [35]. 

To strengthen the model representational power, J. Hu et al. 

[36] proposed a light-weight squeeze-and-excitation block to 

adaptively recalibrate channel-wise feature responses. It can 

significantly promote the model performance for existing state-

of-art CNN models. M. Luo et al. [37] proposed a stochastic 

region pooling module to improve the capacity of channel-wise 

attention network. This module made the channel descriptors 

more diversity and representative through generating more or 

wider important feature response. To realize the adaptive 

receptive field sizes of neurons, X. Li et al. [38] proposed a 

selective kernel convolution to aggregate information from 

multiple kernels. 

Activated by these works, we chiefly focus on seeking a valid 

approach to promote the model capability of insect pest 

recognition. In other words, we try to construct a more effective 

model based on learning multi-scale representation, 

recalibrating channel-wise response, and modeling the 

relationship of these branches to acquire better model 

performance on IP102 and other benchmark datasets. 

III. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 

First, we will present the methodology of deep multi-branch 
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fusion residual network in this section. Then, to maxing the 

model performance, some critical optimization principles 

should be presented, including parameter proportion of 

different branches on model performance and the impact of 

model width. 

A. Methodology 

Learning multi-scale representation is deemed to be a valid 

method to improve model performance. Therefore, in order to 

further improve the capacity of the model, we combine two 

types of residual architectures with a parameter-free branch to 

learn multi-scale representation, as shown in Fig. 1(c), which is 

named as multi-branch fusion residual block. We use 𝑥𝑙 ∈

𝑅𝐻×𝑊×𝐶  denotes the l-th layer input feature map. Then, the 

following computation can perform it: 

𝑢 = 𝑔1(𝑥𝑙 , �̂�1×1) (1) 
𝐵1 = 𝑢 

𝐵2 = 𝐹𝑏𝑎𝑠𝑖𝑐(𝑢, 𝑤𝑏𝑎𝑠𝑖𝑐) 
𝐵3 = 𝐹𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘(𝑢, 𝑤𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘) (2) 

Here the function 𝑔1 denotes to the 1×1 convolution layer 

with the parameter of �̂�1×1 . 𝐵1  , 𝐵2  , and 𝐵3  refer to the 

extracted feature from three branches, and 𝐹𝑏𝑎𝑠𝑖𝑐  and 

𝐹𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘  refer to the residual functions of basic and 

bottleneck residual branches, respectively. 𝑤𝑏𝑎𝑠𝑖𝑐  and 

𝑤𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘  refer to the parameter of two residual branches. 

However, if we concatenated three branches directly, model 

performance can not achieve optimal results. The parameter 

proportion of different branches and the width of the model 

have significant impact on model performance. The comparison 

of these matters will be continued in the following section. 

In order to further improve the capacity of multi-branch 

fusion residual block, we proposed a module to recalibrate 

channel-wise feature response adaptively and to model the 

relationship of the three branches, as shown in Fig. 1(c). This 

module realized this purpose by three operations - Squeeze, 

Fuse and Recalibrate, thus we named it as SFR module. 

Squeeze. Following the setting in SENet [36], we also 

adopted the global average pooling to generate global 

information 𝑏𝑘 ∈ 𝑅𝑐 , k = 1,2,3 from each branch 𝐵𝑘 , k = 1,2,3 

in its spatial dimensions H×W, and the c-th element of 𝑏𝑘 can 

be calculated by: 

𝑏𝑘
𝑐 = 𝐹𝑔𝑝(𝐵𝑘

𝑐) =
1

𝐻 ×𝑊
∑∑𝐵𝑘

𝑐(𝑖, 𝑗), 𝑘 = 1,2,3

𝑊

𝑗=1

𝐻

𝑖=1

(3) 

Where 𝐹𝑔𝑝  denotes the global average function, 𝐵𝑘 =

[𝐵𝑘
1 , 𝐵𝑘

2, … , 𝐵𝑘
𝐶], k = 1,2,3. 

Fuse. As shown in Fig. 1(c), the squeezed signals are 

concatenated as �̂� = [𝑏1
𝑇 , 𝑏2

𝑇 , 𝑏3
𝑇] ∈ 𝑅𝐶×3 . Then, �̂�  is 

reshaped to generate the folded feature map �̃� ∈ 𝑅
𝐶

𝑚
×3𝑚

, where 

the fold-ratio of m is used to control the shape of feature map. 

Subsequently, a 3×3 convolution kernel scans the folded feature 

map to enhance the nonlinear representation capacity, 

�̌� = 𝐹𝑤(�̃�, 𝑤3×3) (4) 

Where �̌� ∈ 𝑅𝐶×
𝐶

𝑚
×3𝑚

, 𝐹𝑤  denotes to 3×3 convolution 

function, and 𝑤3×3 denotes to the parameter of 3×3 convolution 

layer. Then, we obtain the mean result in channel dimension, 

and the flatten layer is used to reshape the convolution results 

for subsequent FC layers, as s = (𝐹𝑓𝑙𝑎𝑡𝑡𝑒𝑛(�̌�))
𝑇

∈ 𝑅3𝐶 . Further, 

a compact feature z ∈ 𝑅
𝐶

𝑑 is implemented to reduce the model 

complexity: 

𝑧 = �̃�𝑓𝑐(𝑠,𝑊1) = 𝛿(𝑊1𝑠) (5) 

Where 𝑊1 ∈ 𝑅
𝐶

𝑑
×3𝐶

, d is the reduction ratio to control the 

bottleneck structure, and δ refers to the relu function. 

Recalibrate. As stated in previous section, our goal is to 

rescale the value for each channel and to model the relationship 

of three branches. Therefore, we implement three soft attention 

vectors 𝑀1, 𝑀2, 𝑀3 ∈ 𝑅𝐶×𝑑  for 𝐵1, 𝐵2, 𝐵3 , respectively. Note 

that 𝑀𝑘
𝑐 is the c-th row of 𝑀𝑘. 

𝑀𝑘 = �̂�𝑓𝑐(𝑧,𝑊2) = σ(𝑊2𝑧) 

�̃�𝑘
𝑐 = 𝑀𝑘

𝑐 ⋅ 𝐵𝑘
𝑐 (6) 

Here 𝑊2 ∈ 𝑅𝐶×
𝐶

𝑑 , �̃�𝑘 = [�̃�𝑘
1, �̃�𝑘

2, … , �̃�𝑘
𝐶], k = 1,2,3 . Then, 

�̃�1, �̃�2, �̃�3 are concatenated together, as �̃� = [�̃�1, �̃�2, �̃�3]. The 

concatenated feature pass through a 1×1 convolution layer to 

reduce the feature map dimension. 

𝑥𝑙+1 = ℎ(𝑥𝑙) + 𝑔2(�̃�, �̌�1×1) (7) 

Where 𝑥𝑙+1 refers to the output of the l-th residual block in 

the network, and 𝑔2  refers to the function of the 1×1 

convolution layer with the parameter of �̌�1×1 . The function 

ℎ(𝑥𝑙) is an identity mapping: ℎ(𝑥𝑙) = 𝑥𝑙. 

B. Optimization of deep multi-branch fusion residual network 

For the sake of maxing DMF-ResNet model performance, 

some critical principles should be determined, including 

parameter proportion of different branch, and the width of the 

model. We test the model performance on the CIFAR-100 

benchmark dataset to evaluate these principles. 

Parameter proportion of different branches on model 

performance. In each multi-branch fusion residual block, the 

three branches represent different scale representation features. 

In these branches, one is parameter-free, and the other two 

branches contain several successive convolutional layers. 

However, as experimental results showed, simply 

concatenating these branches together can not achieve the 

superior effect. Because the parameter proportion of two 

residual signal branches have a significant on model 

performance, which means the feature extracted from the two 

residual branches need to be adjusted to max the capacity of the 

block. In the original ResNet, deeper bottleneck architecture 

has similar time complexity compared with basic residual 

architecture. The deeper bottleneck architecture uses a stack of 

1×1, 3×3, and 1×1 convolution, where 1×1 layers are used to 

reduce and then increase dimension. Meanwhile, the input and 

output dimensions are expanded four times compared with the 

feature map dimension of basic residual architecture. In order 

to learn semantic information equally from each scale, we 

construct each branch having the same output feature map size 

and dimension, which leads to the bottleneck branch having 

fewer parameters compared with the basic residual architecture 

branch. In order to max the model performance, we should 

balance the number of parameters between the two residual 
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signal branches. Let us introduce the factor r and t, as shown in 

Fig. 1(c), where r and t are ratios of reducing the feature map 

dimension for basic and bottleneck residual architecture branch, 

respectively. The experimental results indicate that DMF-

ResNets achieve the best performance when r=2 and t=4, 

which means decrease the parameter proportion of the basic 

residual branch can improve the capacity of the block. 

The impact of model width. Adjusting the parameter 

proportion from different branches can learn each scale 

representation effectively. However, as shown in Fig. 2, we test 

these models with a similar number of parameters. The test 

error on CIFAR-100 of DMF-ResNet is lower than Pre-ResNet 

with basic architecture, while it is still higher than Pre-ResNet 

with bottleneck architecture. We conjectured that the mismatch 

between model width and model performance leads to this 

problem. In the original ResNet, to keep similar compute 

complexity, the feature map dimension of 1×1 convolution 

layer are expanded. Thus, the feature extracted capacity of the 

bottleneck branch in multi-branch fusion residual block is not 

maximized. In order to address this problem, we constructed the 

model with different width under a similar total number of 

parameters, and Table I shows the experimental results. As the 

results showed, the model achieves the best result when the 

model width is 2. Therefore, we adopt width = 2 for DMF- 

ResNet in the following experiments (except where otherwise 

stated). 

 

IV. EXPERIMENT AND ANALYSIS 

We first reported the influence of hyper-parameters on model 

performance in this section. Then, we empirically demonstrated 

the effectiveness of our approach on CIFAR datasets and 

investigated the impact of model depth and width. Subsequently, 

we implemented some ablation experiments to verify the 

validness of multi-branch fusion and SFR module. Based on 

these explorations, we further constructed DMF-ResNets for 

high-resolution image classification tasks and evaluated these 

models’ accuracy performance on IP102 dataset. 

A. Influence of hyper-parameters 

For the sake of exploring the impact of the two hyper-

parameters (reducing ratio r and t) on model performance, we 

constructed some ablation experiments on CIFAR-100 datasets 

under a similar total number of parameters. Meanwhile, to 

eliminate the interference, we constructed these models without 

the SFR module, and the experimental results are shown in 

Table II. As the results showed, increasing the value of r and t 

at the same time can bring benefits to our model, and the model 

achieves the best test error result as r = 2 and t = 4. It means 

the multi-branch fusion residual block learns multi-scale 

representation more effectively with r = 2 and t = 4. Under this 

condition, we calculate the number of parameters for each 

residual branch. The result shows that the bottleneck branch 

extracts feature with fewer parameters than the basic branch. 

Thus, it demonstrated that the parameter effectiveness of the 

bottleneck branch is higher than the basic branch. 

B. Implementations on CIFAR datasets 

To demonstrate the validness of our method, we first 

evaluated our models on CIFAR-10 and CIFAR-100 

benchmark datasets. For CIFAR datasets, the weights are 

initialized by Kaiming Xavier algorithm [39], and all models 

adopted SGD algorithm. The momentum is 0.9, with a min-

batch size of 128. The learning rate is set to be 0.1, and it drops 

to 1/10 and 1/100 at 150th and 225th, ending at 300 epochs. All 

experiments are constructed on Pytorch platform. Meanwhile, 

in multi-branch fusion residual block, the final settings of 

model performance depended on four hyper-parameters: the 

fold-ratio of m, the feature dimension reducing factor of r and t, 

and the reduction ratio of d. In our experiments, the model 

performance is not very sensitive to the fold-ratio of m. As the 

experimental results showed, the model obtains the best result 

when m = 8. Thus, we select m = 8 for CIFAR-10 and CIFAR-

100 datasets in the following experiments. Following the setting 

of the reduction ratio in SENet [36], we set d = 4 for CIFAR-10 

and CIFAR-100 datasets. The effect of the reduction ratio of r 

and t has been discussed in the previous section. 

 
Fig. 2. Test error (%) on CIFAR-100. Multi-branch fusion architecture 

achieves lower test error than basic architecture, but still higher than 

bottleneck architecture. 
 

TABLE I 

THE TEST ERROR (%) ON CIFAR-10 WITH DIFFERENT WIDTH UNDER A 

SIMILAR TOTAL NUMBER OF PARAMETERS. 

Width Params Error (%) 

1 2.54M 23.24 

2 2.45M 21.38 

3 2.76M 22.22 
 

 
TABLE II 

COMPARISON THE TEST ERROR (%) OF DMF-RESNET WITH DIFFERENT 

REDUCING RATIO OF r AND t UNDER A SIMILAR TOTAL NUMBER OF 

PARAMETERS ON CIFAR-100. THE MODEL ACHIEVES THE BEST RESULT 

WHEN r = 2 AND t = 4 

t 

r 
1 2 4 8 

1 22.66 22.37 22.61 22.41 

2 22.69 21.77 21.38 21.82 

4 22.37 21.72 21.80 21.92 
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C. CIFAR classification by DMF-ResNet 

CIFAR-10 and CIFAR-100 datasets consist of 50K training 

and 10K testing colored natural scene images, with 32×32 

pixels each. CIFAR-10 dataset contains 10 classes, each of 

which consists of 6000 images. CIFAR-100 dataset contains 

100 classes, each of which consists of 600 images. We adopted 

the standard data augmentation strategy, which is widely used 

for these datasets. For each image, 4 pixels are padded on each 

side to form an image with a size of 40×40. Then, a random 

32×32 crop is applied to produce 32×32 images with 

horizontally mirroring half of the image. Mean and standard 

deviation normalization are also adopted. 

We experimented with four models on CIFAR datasets: 164-

layer Pre-ResNet with basic residual block, 245-layer Pre-

ResNet with bottleneck residual block, 122-layer DMF-ResNet 

without SFR module, and 122-layer DMF-ResNet. All these 

models have a similar total number of parameters, and the test 

error performance and training curves on CIFAR datasets are 

showed in Fig. 3, Fig. 4, and Table III. As the results shown, 

the 164-layer Pre-ResNet with basic residual block had a 5.23% 

and 26.11% test error on CIFAR-10 and CIFAR-100, 

respectively. The 245-layer Pre-ResNet with bottleneck 

residual block achieved a competitive 4.42% and 22.16% test 

error on CIFAR-10 and CIFAR-100, respectively, which is 

better than Pre-ResNet with basic residual block. The 122-layer 

DMF-ResNet without SFR module outperformed 245-layer 

Pre-ResNet with bottleneck residual block by 0.1% on CIFAR-

10 and 0.78% on CIFAR-100, which demonstrated that fusing 

the extracted feature from three branches can bring benefits for 

model performance. Meanwhile, the 122-layer DMF-ResNet 

with the SFR module achieved better test error performance 

than without the SFR module, and it achieved 4.01% and 

20.85% test error on CIFAR-10 and CIFAR-100, respectively. 

Therefore, the results demonstrate that the SFR module also can 

bring improvements to our model. 

 

D. The impact of depth and width 

In order to explore the effect of depth and width on DMF-

ResNet, we implemented the following experiments. These 

experiments are evaluated on CIFAR datasets, and Table IV 

and Table V report the experimental results. As results showed, 

 
Fig. 3. Test error curves on CIFAR-10 by 164-layer Pre-ResNet, 245-layer 

Pre-ResNet, 122-layer DMF-ResNet without SFR module and 122-layer 

DMF-ResNet during training, corresponding to results in Table III. The 122-

layer DMF-ResNet (the red curve) is shown yielding a lower test error than 

other models. 

 
TABLE III 

TEST ERROR (%) ON CIFAR-10 AND CIFAR-100 DATASETS. 

 Params 
CIFAR-10 

Error (%) 

CIFAR-100 

Error (%) 

164-layer Pre-ResNet 

(basic architecture) 
2.6M 5.23 26.11 

245-layer Pre-ResNet 

(bottleneck architecture) 
2.5M 4.42 22.16 

122-layer DMF-ResNet 

(without SFR) 
2.4M 4.32 21.38 

122-layer DMF-ResNet 2.7M 4.01 20.85 
 

 

 
Fig. 4. Test error curves on CIFAR-100 by 164-layer Pre-ResNet, 245-layer 

Pre-ResNet, 122-layer DMF-ResNet without SFR module and 122-layer 

DMF-ResNet during training, corresponding to results in Table III. The 122-

layer DMF-ResNet (the red curve) is shown yielding a lower test error than 

other models. 

 
TABLE IV 

TEST ERROR (%) ON CIFAR-10 AND CIFAR-100 WITH DIFFERENT DEPTH 

Depth Params 
CIFAR-10 

Error (%) 

CIFAR-100 

Error (%) 

122 2.7M 4.01 20.85 

182 4.1M 3.97 20.77 

302 6.8M 3.82 20.16 

1052 

(batch-size=32) 
23.7M 3.63 18.73 

 

 
TABLE V 

TEST ERROR (%) ON CIFAR-10 AND CIFAR-100 WITH DIFFERENT WIDTH. 

Depth and Width Params 
CIFAR-10 

Error (%) 

CIFAR-100 

Error (%) 

122-2 2.7M 4.01 20.85 

122-4 10.8M 3.77 19.12 

122-8 42.9M 3.52 17.51 

302-4 26.9M 3.53 18.26 

122-8+mixup 42.9M 2.60 16.88 
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increasing depth or width could bring benefits to our models. 

In terms of depth, we implemented 122-layer, 182-layer, 

302-layer, and 1052-layer DMF-ResNet to explore the 

influence of depth for our model. As results are showed in Table 

IV, the test error gradually decreased on CIFAR-10 and 

CIFAR-100 datasets when depth increased. The 302-layer 

DMF-ResNet had a 3.82% test error on CIFAR-10 test set and 

a 20.16% test error on CIFAR-100 test set. For extremely deep 

DMF-ResNet, due to the limited resource, the 1052-layer model 

was trained with a batch-size of 32, and it can still achieve a 

3.63% test error on CIFAR-10 test set and 18.73% test error on 

CIFAR-100 test set. Based on these experimental results, we 

can conclude that increasing the depth can bring benefits for our 

model performance. 

In terms of width, we implemented DMF-ResNet with a 

different width to explore the influence of width for our model. 

As the results are showed in Table V, the test error gradually 

decreased on CIFAR-10, and CIFAR-100 datasets as the width 

increased on 122-layer DMF-ResNet. The DMF-ResNet-122-8 

had a 3.52% test error on CIFAR-10 and 17.51% test error on 

CIFAR-100. Meanwhile, we also constructed the DMF-

ResNet-302-4, and it had a 3.53% test error on CIFAR-10 test 

set and 18.26% test error on CIFAR-100 test set. Thus, the 

result indicates that increasing the depth and width at the same 

time can also improve model performance. On the other hand, 

augmentation methods, such as mixup [40], can further improve 

model performance. The DMF-ResNet122-8+mixup had the 

2.60% test error and 16.88% test error on CIFAR-10 and 

CIFAR-100, respectively. 

E. Ablation Study 

For the sake of demonstrating the effectiveness of the multi-

branch fusion and SFR module, we constructed some ablation 

experiments as follows. These experiments are evaluated on 

CIFAR-100 dataset. 

 

Multi-branch Fusion. In DMF-ResNet, we fused three 

branches between two 1×1 convolutional layer. One branch is 

parameter-free, and the other two are residual signals with basic 

residual block or bottleneck residual block. In order to 

demonstrate the effectiveness of the multi-branch fusion 

approach, we constructed four models to compare with 122-

layer DMF-ResNet. Model A is the 164-layer Pre-ResNet with 

basic residual block. Model B is the 164-layer Pre-ResNet with 

basic residual block and channel reduction ratio of 2 (r = 2). 

Doubling the width of model B, we obtained model C. Model 

D is the 254-layer Pre-ResNet with bottleneck residual block. 

 
Fig. 5. Structure of multi-branch fusion residual block with the SE module in different localization for ablation study, corresponding to results in Table VII. 

 

TABLE VI 
TEST ERROR (%) ON CIFAR-100 TO DEMONSTRATE THE EFFECTIVENESS OF 

MULTI-BRANCH FUSION. 

Model Params 
CIFAR-100 

Error (%) 

A (basic) 2.6M 26.11 

B (basic, r=2) 2.5M 25.62 

C (basic, r=2, w=2) 2.5M 25.04 

D (bottleneck) 2.6M 22.16 

122-layer DMF-ResNet 

(without SFR) 
2.4M 21.38 

 

 

TABLE VII 
TEST ERROR (%) ON CIFAR-100 TO DEMONSTRATE THE EFFECTIVENESS OF 

SFR MODULE. 

Model Params 
CIFAR-100 

Error (%) 

(a) without SFR module 2.5M 21.38 

(b) SE on each branch 2.7M 21.12 

(c) SE on main path 2.5M 21.66 

122-layer DMF-ResNet 2.7M 20.85 
 

 

Output

(a) Multi-branch fusion residual block 

      without SFR module

Input

C

conv1×1

conv3×3

conv3×3

conv1×1

conv1×1

conv1×1

conv3×3

Input

C

conv1×1
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conv3×3

conv1×1

conv1×1

conv1×1

conv3×3

SE SESE

Output

(b) SE module on each branch

Input

C

conv1×1
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conv3×3

conv1×1

conv1×1

conv1×1

conv3×3

Output

(c) SE module on main path

SE
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The results are reported in Table VI. All models are constructed 

under a similar total number of parameters. Compared to model 

A with model B, channel reduction between two 3×3 

convolution layers make the model deeper under a similar 

number of parameters, which improves the model performance. 

Compared to model B with model C, increasing width has the 

same effect. However, model D had the lowest test error than 

the other three models. DMF-ResNet without SFR module 

contains the residual signal in models C and D, and it has a 

21.38% test error on CIFAR-100 test set. The result 

outperforms model D by 0.78%. Therefore, it demonstrated the 

effectiveness of our multi-branch fusion approach. 

Impact of SFR module. For the sake of verifying the 

effectiveness of the SFR module, we implemented some 

ablation experiments. We constructed three models to compare 

with DMF-ResNet, as shown in Fig. 5. To simplify, we omit the 

batch normalization and relu layer. The first residual block is 

the multi-branch fusion residual block without the SFR module. 

The second residual block adds a SE block in each branch. The 

third residual block only adds a SE block in the main residual 

signal. All these models are constructed under a similar total 

number of parameters and tested model performance on 

CIFAR-100 dataset. Table VII shows the experimental results. 

As the results showed, compared (a) with (c), adding a SE block 

in the main signal can not improve the model performance. 

Compared (a) with (b), adding a SE block in each branch can 

bring benefits to model performance. However, model (b) is 

short of modeling the relationship between three branches. The 

122-layer DMF-ResNet had a 20.85% test error on CIFAR-100 

test set, which outperforms model (b) by 0.27%. Based on these 

analyses, we can conclude that the SFR module can enhance 

our model performance effectively. 

F. Classification results on IP102 

Based on the previous experiments and analyses, to further 

demonstrate the effectiveness of our approach, we constructed 

DMF-ResNet for high-resolution image classification tasks. 

Then we applied it in a specific domain to recognize insect pests. 

For the high-resolution image classification task, we 

implemented DMF-ResNet with different depths, which of the 

overall architectures are listed in Table VIII. As described in 

the previous section, doubling the width of the model can 

reduce the test error significantly under a similar total number 

of parameters. However, increasing the width will introduce 

more parameters. Therefore, in order to control the number of 

parameters, we constructed these models with three stages, 

which is different from the original ResNet with four stages. 

We increased the number of multi-branch residual blocks in the 

second stage to construct models with different depths, 

including 77-layer, 97-layer, and 117-layer DMF-ResNet. 

Meanwhile, in our experiments, we select m = 16 in the 

following experiments. Following the setting of the reduction 

ratio in SENet [36], we set d = 16 for IP102 dataset.  

As a large-scale insect pest dataset, IP102 consists of 45,095 

training images, 7,508 validation images, and 22,619 testing 

images with 102 classes of common crop insect pests for the 

classification task. Fig. 6 shows some examples from IP102 

dataset. The dataset involves several properties, which bring 

difficulties for insect pest classification tasks. First, due to the 

similar color of pests and background, it is difficult to be 

distinguished. Second, different growth forms of the same type 

of insect pests are collected into the same category. Third, the 

similarity between different types of insect pests is high. 

Therefore, the rich extracted feature from insect pest images 

will help distinguish similar pest species. So, we hypothesis that 

learning multi-scale representation will be conducive to model 

classification performance. The experimental results also 

demonstrate this hypothesis, as shown in the following section. 

We evaluated our models with different depths on IP102 

dataset. We adopt 0.01 as the initial learning rate, and it drops 

TABLE VIII 

DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK ARCHITECTURES CONFIGURATION. 

Layer name Output size 77-layer 97-layer 117-layer 

Conv1_x 112×112 7×7, 64, stride 2 

Conv2_x 56×56 

3×3, max pool, stride 2 

[
3 × 3, 64
3 × 3, 128

] × 5, [
1 × 1, 32
3 × 3, 32
1 × 1, 128

] × 5 [
3 × 3, 64
3 × 3, 128

] × 5, [
1 × 1, 32
3 × 3, 32
1 × 1, 128

] × 5 [
3 × 3, 64
3 × 3, 128

] × 5, [
1 × 1, 32
3 × 3, 32
1 × 1, 128

] × 5 

Conv3_x 28×28 [
3 × 3, 128
3 × 3, 256

] × 6, [
1 × 1, 64
3 × 3, 64
1 × 1, 256

] × 6 [
3 × 3, 128
3 × 3, 256

] × 10, [
1 × 1, 64
3 × 3, 64
1 × 1, 256

] × 10 [
3 × 3, 128
3 × 3, 256

] × 14, [
1 × 1, 64
3 × 3, 64
1 × 1, 256

] × 14 

Conv4_x 14×14 [
3 × 3, 256
3 × 3, 512

] × 4, [
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 [
3 × 3, 256
3 × 3, 512

] × 4, [
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 [
3 × 3, 256
3 × 3, 512

] × 4, [
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 

 1×1 Average pool, 102-d fc, softmax 
 

 

 
Fig. 6. The example images from IP102. Each image belongs to a different 

Category of insect pests. 
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to 1/10 and 1/100 at 40th and 80th, ending at 120 epochs. SGD 

is used with a batch-size of 32. The weight decay is set to be 

0.0005, and the momentum is set to be 0.9. For data 

augmentation strategies, we adopt the following common 

approaches in the training phase. First, the image is randomly 

cropped a rectangular region, which is randomly sampled in 

[3/4, 4/3] and area randomly sampled in [0.08, 1] from resized 

256×256 squared image. Second, the cropped region is resized 

into the size of 224×224. Third, randomly horizontal flips and 

standard deviation normalization are also applied in these 

experiments. During the evaluation period, the cropped 

224×224 region from the center of the resized 256×256 image 

is used to classify. In these experiments, the model is trained on 

the training set and evaluated on the validation set to obtain the 

optimization model. Then we acquire the accuracy performance 

on the test set. 

We implement three DMF-ResNets with different depths to 

compare with ResNet, Pre-ResNet, and other state-of-art 

methods. The accuracy performance on the test set is reported 

in Table IX, and Fig. 7 shows the test accuracy curves on the 

evaluation set during training. As the results showed, 77-layer 

DMF-ResNet achieved a 57.67 F1 scores and 58.48% test 

accuracy on the test set surpassing 50-layer ResNet 1.26 and 

1.09% respective with fewer parameters. Meanwhile, the 77-

layer DMF-ResNet achieved better model performance than 

other state-of-art methods. As the depth going deep, the DMF-

ResNet test accuracy and F1 score increased. The 117-layer 

DMF-ResNet had a 58.37 F1 score and 59.22% test accuracy 

on the test set. Based on these experiments, we empirically 

demonstrated the validness of our approach to IP102 dataset. 

For the sake of visualizing the effect of our approach, we use 

the technique of Grad-Cam [41] to highlight the important 

regions in the image for our insect pest classification task. To 

evaluate the effect of multi-fusion method and SFR module 

more clearly, we compare results from three models, including 

ResNet-50, DMF-ResNet without SFR module, and DMF-

ResNet. We randomly select some images from IP102 dataset, 

and Table X presents the results. Compared ResNet-50 with 

DMF-ResNet without SFR module columns, the highlighted 

region in DMF-ResNet without SFR moduel column is wider 

than ResNet-50. It indicates that multi-scale learning obtained 

more abundant extracted features for the classification task. 

Compared DMF-ResNet without SFR module with DMF-

ResNet columns, we can observe that the highlighted regions 

are finetuned to acquire more precise information for our task. 

Therefore, based on these analyses, we further demonstrate the 

effectiveness of our approach by visualizing the important 

regions for our task. 

V. DISSCUSSION 

In this section, we further discuss the effectiveness of our 

approach in two folds. First, we will discuss the effectiveness 

of the multi-branch fusion and SFR module. Second, we will 

discuss the parameter efficiency. 

A. The effectiveness of the multi-branch fusion and SFR 

module 

Compared with the original ResNet, DMF-ResNet combined 

the extracted feature from three branches to learn the multi-

scale representation. The experimental results in Table III and 

Table VI supported that learning multi-scale representation can 

enrich the feature for the classification task. Furthermore, the 

SFR module can further improve model performance. Through 

visualizing the effect of these approaches on some images, as 

shown in Table X, the wider highlighted regions indicate that 

the receptive filed is enlarged by learning the multi-scale 

representation. Meanwhile, the SFR module can finetune the 

response region by recalibrating channel-wise feature responses 

and modeling the relationship of these branches. Based on the 

result shown in Table X, the highlight region is wider and 

precise. Therefore, it can be used to extract features in two-stage 

fine-grained image classification models to localize the object 

more accurately. 

B. Parameter efficiency 

In each multi-branch fusion residual block, we explored the 

different branches of parameter proportion on model 

performance, and the test error performance is reported in Table 

TABLE IX 

THE F1 SCORE AND TEST ACCURACY (%) ON IP102 DATASET BY DMF-
RESNET AND OTHER STATE-OF-ART METHODS. 

P102 Depth Params F1 Acc (%) 

AlexNet [42] 8 57.42M 48.08 49.63 

ResNet-50 [10] 50 23.72M 56.41 57.39 

ResNet-101 [10] 101 42.63M 55.37 56.02 

Pre-ResNet-50 [11] 50 23.70M 55.18 55.86 

VGG-16 [16] 16 134.68M 53.18 54.43 

Densenet-121 [18] 121 7.06M 56.81 57.73 

DMF-ResNet 

77 22.10M 57.67 58.48 

97 25.96M 58.06 59.11 

117 29.70M 58.37 59.22 
 

 

 
Fig. 7. The evaluation curves on IP102 dataset by DMF-ResNet and other 

state-of-art methods during training period. 
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II. As the results showed, the model achieves the best model 

performance as r=2 and t=4. Therefore, compared to the 

bottleneck branch with the basic branch, the ratio of the number 

of parameters in two branches is 1:9. Because these branches 

have the same feature dimension, thus each branch provided the 

same semantic information for model performance. Based on 

these analyses, we can obtain that the extracting feature 

capacity of the bottleneck branch is more effective than basic 

branch with fewer parameters. So, we can conclude that a more 

effective convolution branch can further enhance the model 

performance, and the results also provide our direction to 

improve our model performance in the future. 

VI. CONCLUSION 

In our work, to learn the multi-scale representation to 

improve the model performance, we fused the extracted feature 

from three branches in each residual block. Moreover, we 

proposed the SFR module to recalibrate channel-wise feature 

responses and to model the relationship between these branches. 

The experimental results verified the effectiveness of our 

approach on CIFAR-10 and CIFAR-100 datasets. Even for 

extremely deep DMF-ResNet, our model can achieve 

compelling results. Then, we constructed our model with 

different depths and tested the F1 score and model accuracy on 

IP102 dataset. Compared to the baseline models and other state-

of-art methods, our model can obtain the best model 

performance on IP102 dataset, which had proved the validness 

of our approach for the high-resolution image classification task. 

Through visualizing the highlighted regions on images, we can 

further explain the effect of our approach for the image 

classification task. Therefore, based on these empirical studies, 

we have verified the effectiveness of our approach. 

In the future, we will try to construct a more effective feature 

fusion method and apply the model to perform the fine-grained 

image classification task. 
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