80 research outputs found

    Nanostructured Fe 2

    Get PDF
    In the present work, a method combining arc plasma evaporation of a metal followed by oxidation in air was developed to produce nanosized metal oxide based composites in large scale. As an example, Fe2O3 based nanocomposites were prepared through such a method. With increasing the oxidation temperature, α-Fe2O3 content in the composites increases, while γ-Fe2O3 and residual α-Fe contents decrease. As anode materials for lithium batteries, the electrochemical properties of nanosized Fe2O3 composites were tested. It was found that the anode materials changed to tiny crystallites and then followed by grain growth during the galvanostatic charge/discharge cycles. A capacity rising was observed for the composites obtained at 400°C and 450°C, which was more prominent with increasing the oxidation temperature. Among these composites, the one obtained at 450°C showed the best performance: a specific capacity of 507.6 mAh/g remained after 150 cycles at a current density of 200 mA/g, much higher than that of the commercial nano-Fe2O3 powder (~180 mAh/g after 30 cycles)

    Ameliorative Effect of D-α-Tocopherol Acetate Complexes on D-Galactose-Induced Aging in Mice

    Get PDF
    To investigate the ameliorative effect of the D-α-tocopheryl acetate compound on D-galactose-induced aging in mice, the in vitro antioxidant capacity of the compound of natural oils+phytosterols (VEO), the compound of D-α-tocopheryl acetate+phytosterol (VEZ), and the compound of D-α-tocopheryl acetat+phytosterol+astaxanthin (VEX) were measured. The aging model was established using mice injected with D-galactose on the back of the neck, while the intervention was carried out with different compounds. The results showed that all three groups of compounds had strong antioxidant effects, with the VEZ group showing better in vitro antioxidant effects. Compared with the aging model mice, the intervention of the three compounds increased glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC), decreased malondialdehyde (MDA) (P<0.01), and a decrease in the serum inflammatory factors interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor (TNF-α) and liver function indicators alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were significantly reduced (P<0.01). After the intervention, the mRNA and protein expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), quinone oxidoreductase (NQO-1) and heme oxygenase-1 (HO-1) in mice were significantly enhanced (P<0.0001). This indicated that the different combinations exerted their antioxidant effects through up-regulating the expression of Nrf2, NQO-1 and HO-1, thus achieving anti-aging effects, with the VEZ group showing the best expression effect. In conclusion, D-α-Tocopheryl acetate complex achieved their anti-aging effects by increasing the expression of antioxidant-related mRNAs and proteins, thus enhancing the levels of downstream antioxidant enzymes, among which D-α-tocopheryl acetate was more effective when combined with phytosterols

    Hybridization modeling of oligonucleotide SNP arrays for accurate DNA copy number estimation

    Get PDF
    Affymetrix SNP arrays have been widely used for single-nucleotide polymorphism (SNP) genotype calling and DNA copy number variation inference. Although numerous methods have achieved high accuracy in these fields, most studies have paid little attention to the modeling of hybridization of probes to off-target allele sequences, which can affect the accuracy greatly. In this study, we address this issue and demonstrate that hybridization with mismatch nucleotides (HWMMN) occurs in all SNP probe-sets and has a critical effect on the estimation of allelic concentrations (ACs). We study sequence binding through binding free energy and then binding affinity, and develop a probe intensity composite representation (PICR) model. The PICR model allows the estimation of ACs at a given SNP through statistical regression. Furthermore, we demonstrate with cell-line data of known true copy numbers that the PICR model can achieve reasonable accuracy in copy number estimation at a single SNP locus, by using the ratio of the estimated AC of each sample to that of the reference sample, and can reveal subtle genotype structure of SNPs at abnormal loci. We also demonstrate with HapMap data that the PICR model yields accurate SNP genotype calls consistently across samples, laboratories and even across array platforms

    High temperature deformation behavior of permanent casting AZ91 alloy with and without Sb addition

    No full text
    The elevated temperature deformation behavior of permanent cast magnesium alloy AZ91 with and without Sb addition has been investigated using slow strain rate (5.0 × 10 −4 s −1 ) elevated temperature tensile and constant load creep testing at 150 • C and 50 MPa. The alloy with 0.4 wt% Sb showed a higher elevated temperature tensile strength and creep resistance due to the formation of thermal stable Mg 3 Sb 2 precipitates and a smaller microstructure as well as the suppressing of the discontinuous precipitation. Plastic deformation of AZ91 based alloys is determined by motion of dislocation in basal plane and non-basal slip systems. The dislocation motion in a slip system is influenced by temperature, precipitates and other lattice defects. Dislocations jog, grain boundaries and/or precipitates are considered as obstacles for moving dislocations. The (0112) deformation twinning were founded in the creep process by TEM. Cross slip of dislocations was taken into account as the main softening mechanism for permanent cast AZ91 alloy during elevated temperature deformation process. C 2002 Kluwer Academic Publisher

    Surface Characteristics and High Cycle Fatigue Performance of Shot Peened Magnesium Alloy ZK60

    Get PDF
    The current work investigated the effect of shot peening (SP) on high cycle fatigue (HCF) behavior of the hot-extruded ZK60 magnesium alloy. SP can significantly improve the fatigue life of the ZK60 alloy. After SP at the optimum Almen intensities, the fatigue strength at 107 cycles in the as-extruded (referred to as ZK60) and the T5 aging-treated (referred to as ZK60-T5) alloys increased from 140 and 150 MPa to 180 and 195 MPa, respectively. SP led to a subsurface fatigue crack nucleation in both ZK60 and ZK60-T5 alloys. The mechanism by which the compressive residual stress induced by shot peening results in the improvement of fatigue performance for ZK60 and ZK60-T5 alloys was discussed

    Hot compressive deformation behaviors of Mg–10Gd–3Y–0.5Zr alloy

    No full text
    In this paper, the hot compressive deformation characteristics of a Mg–10Gd–3Y–0.5Zr (GW103K) alloy have been investigated by isothermal compression test at the temperature range of 350–450°C and strain rate range of 0.0001–0.1s−1. True stress–strain relationships at various strain rates showed the typical strain hardening and softening stage which is indicative of dynamic recrystallization during deformation. The results showed that the peak stress was obviously dependent on temperature and strain rate. A constitutive equation to describe the deformation process was established based on the hyperbolic sine function. The stress exponent n and apparent activation energy Q were determined to be 3.018 and 203.947 kJ/mol, respectively. Microstructure investigation showed that dislocation slipping was the dominant deformation mechanism during the hot deformation at all conditions. However, at the temperatures lower than 400 °C and strain rates higher than 0.01s−1, twinning was observed to be activated, which indicated another deformation mechanism. Dynamic recrystallization and dynamic precipitation were found to occur simultaneously under such deformation condition

    Spatiotemporal Variation and Future Predictions of Soil Salinization in the Werigan–Kuqa River Delta Oasis of China

    No full text
    Soil salinization is a serious global issue; by 2050, without intervention, 50% of the cultivated land area will be affected by salinization. Therefore, estimating and predicting future soil salinity is crucial for preventing soil salinization and investigating potential arable land resources. In this study, several machine learning methods (random forest (RF), Light Gradient Boosting Machine (LightGBM), Gradient Boosting Decision Tree (GBDT), and eXtreme Gradient Boosting (XGBoost)) were used to estimate the soil salinity in the Werigan–Kuqa River Delta Oasis region of China from 2001 to 2021. The cellular automata (CA)–Markov model was used to predict soil salinity types from 2020 to 2050. The LightGBM method exhibited the highest accuracy, and the overall prediction accuracy of the methods had the following order: LightGBM > RF > GBRT > XGBoost. Moderately saline, severely saline, and saline soils were dominant in the east and south of the research area, while non-saline and mildly saline soils were widely distributed in the inner oasis area. A marked decreasing trend in the soil salt content was observed from 2001 to 2021, with a decreasing rate of 4.28 g/kg·10 a−1. The primary change included the conversion of mildly and severely saline soil types to non-saline soil. The generalized difference vegetation index (51%), Bio (30%), and temperature vegetation drought index (27%) had the greatest influence, followed by variables associated with soil attributes (soil organic carbon and soil organic carbon stock) and terrain (topographic wetness index, slope, aspect, curvature, and topographic relief index). Overall, the CA–Markov simulation resulted exhibited suitable accuracy (kappa = 0.6736). Furthermore, areas with non-saline and mildly saline soils will increase while areas with other salinity levels will continue to decrease from 2020 to 2050. From 2046 to 2050, numerous areas with saline soil will be converted to non-saline soil. These results can provide support for salinization control, agricultural production, and soil investigations in the future. The gradual decline in soil salinization in the research area in the past 20 years may have resulted from large-scale land reclamation, which has turned saline alkali land into arable land and is also related to effective measures taken by the local government to control salinization

    Influence of trace As content on the microstructure and corrosion behavior of the AZ91 alloy in different metallurgical conditions

    No full text
    The influence of trace As content (0.04, 0.05, 0.06 wt%) on the microstructure and corrosion behavior of AZ91 alloy in different metallurgical conditions (as-cast, as-quenched, peak-aged) was firstly investigated. It is found that the corrosion resistance of AZ91 alloy in all conditions is significantly enhanced by As addition, mainly due to cathodic toxication, melt purification and incidence reduction of local corrosion. As alloying leads to the formation of MgAs and makes the β-MgAl phase less continuous in the as-cast alloys. The alloy containing 0.06 wt% As obtains a higher corrosion rate than those of the alloy containing 0.05 wt% As owing to a more discontinuity of β phase. The β phase is dissolved into the matrix in the as-quenched alloys and reprecipitates along the grain boundaries after aging. The more continuous β phase distribution in the peak-aged alloys contributes to corrosion resistance. The corrosion rates are in the order of as-quenched>as-cast>peak-aged. The lowest corrosion rate (0.67 mm/y) in 3.5 wt% NaCl solution is obtained in the peak-aged AZ91-0.05As alloy, which is over 70% lower than that of as-cast AZ91 alloy (2.22 mm/y)

    Nonlinear Changes in Dryland Vegetation Greenness over East Inner Mongolia, China, in Recent Years from Satellite Time Series

    No full text
    Knowledge of the dynamics of dryland vegetation in recent years is essential for combating desertification. Here, we aimed to characterize nonlinear changes in dryland vegetation greenness over East Inner Mongolia, an ecotone of forest&ndash;grassland&ndash;cropland in northern China, with time series of Moderate-resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) and GEOV2 leaf area index (LAI) values during 2000 to 2016. Changes in the growing season EVI and LAI were detected with the polynomial change fitting method. This method characterizes nonlinear changes in time series by polynomial fitting with the highest polynomial order of three, and simultaneously provides an estimation of monotonic trends over the time series by linear fitting. The relative contribution of climatic factors (precipitation and temperature) to changes in the EVI and LAI were analyzed using linear regression. In general, we observed similar patterns of change in the EVI and LAI. Nonlinear changes in the EVI were detected for about 21% of the region, and for the LAI, the percentage of nonlinear changes was about 16%. The major types of nonlinear changes include decrease&ndash;increase, decrease&ndash;increase&ndash;decrease, and increase&ndash;decrease&ndash;increase changes. For the overall monotonic trends, very small percentages of decrease (less than 1%) and widespread increases in the EVI and LAI were detected. Furthermore, large areas where the effects of climate variation on vegetation changes were not significant were observed for all major types of change in the grasslands and rainfed croplands. Changes with an increase&ndash;decrease&ndash;increase process had large percentages of non-significant effects of climate. The further analysis of increase&ndash;decrease&ndash;increase changes in different regions suggest that the increasing phases were likely to be mainly driven by human activities, and droughts induced the decreasing phase. In particular, some increase&ndash;decrease changes were observed around the large patch of bare areas. This may be an early signal of degradation, to which more attention needs to be paid to combat desertification

    Preparation and Hydrogen Storage Properties of Mg-Rich Mg-Ni Ultrafine Particles

    No full text
    In the present work, Mg-rich Mg-Ni ultrafine powders were prepared through an arc plasma method. The phase components, microstructure, and hydrogen storage properties of the powders were carefully investigated. It is found that Mg2Ni and MgNi2 could be obtained directly from the vapor state reactions between Mg and Ni, depending on the local vapor content in the reaction chamber. A nanostructured MgH2 + Mg2NiH4 hydrogen storage composite could be generated after hydrogenation of the Mg-Ni ultrafine powders. After dehydrogenation, MgH2 and Mg2NiH4 decomposed into nanograined Mg and Mg2Ni, respectively. Thermogravimetry/differential scanning calorimetry (TG/DSC) analyses showed that Mg2NiH4 phase may play a catalytic role in the dehydriding process of the hydrogenated Mg ultrafine particles
    corecore