357 research outputs found

    Thickness dependence of superconductivity and superconductor-insulator transition in ultrathin FeSe films on SrTiO3(001) substrate

    Full text link
    Interface-enhanced high-temperature superconductivity in one unit-cell (UC) FeSe film on SrTiO3(001) (STO) substrate has recently attracted much attention in condensed matter physics and material science. Here, by ex situ transport measurements, we report on the superconductivity in FeSe ultra-thin films with different thickness on STO substrate. We find that the onset superconducting transition temperature (Tc) decreases with increasing film thickness of FeSe, which is opposite to the behavior usually observed in traditional superconductor films. By systematic post-annealing of 5 UC FeSe films, we observe an insulator to superconductor transition, which is accompanied with a sign change of the dominated charge carriers from holes to electrons at low temperatures according to the corresponding Hall measurement

    Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models

    Full text link
    Retrieval-augmented language models (RALMs) represent a substantial advancement in the capabilities of large language models, notably in reducing factual hallucination by leveraging external knowledge sources. However, the reliability of the retrieved information is not always guaranteed. The retrieval of irrelevant data can lead to misguided responses, and potentially causing the model to overlook its inherent knowledge, even when it possesses adequate information to address the query. Moreover, standard RALMs often struggle to assess whether they possess adequate knowledge, both intrinsic and retrieved, to provide an accurate answer. In situations where knowledge is lacking, these systems should ideally respond with "unknown" when the answer is unattainable. In response to these challenges, we introduces Chain-of-Noting (CoN), a novel approach aimed at improving the robustness of RALMs in facing noisy, irrelevant documents and in handling unknown scenarios. The core idea of CoN is to generate sequential reading notes for retrieved documents, enabling a thorough evaluation of their relevance to the given question and integrating this information to formulate the final answer. We employed ChatGPT to create training data for CoN, which was subsequently trained on an LLaMa-2 7B model. Our experiments across four open-domain QA benchmarks show that RALMs equipped with CoN significantly outperform standard RALMs. Notably, CoN achieves an average improvement of +7.9 in EM score given entirely noisy retrieved documents and +10.5 in rejection rates for real-time questions that fall outside the pre-training knowledge scope.Comment: Preprin

    A New Type of Crumb Rubber Asphalt Mixture: A Dry Process Design and Performance Evaluation

    Get PDF
    To obtain a crumb rubber asphalt mixture with excellent performance, this study combined trans-polyoctenamer rubber (TOR), crumb rubber, and other additives to establish a new type of crumb rubber (CRT). The objective of this study was to design and evaluate the road performance of the new type of crumb rubber asphalt mixture (CRTAM) with a skeleton dense texture through a dry process. First, the skeleton intrusion compact volume method was used to optimize the grading of coarse and fine aggregates, and the design of the CRTAM gradation was carried out through the same and unequal volume replacement grading method. Then, three types of road performance were analyzed: high-temperature stability, low-temperature crack resistance, and water stability. The results showed that 2% and 2.5% CRT met a low-temperature index with equal volume substitution, and the six gradations obtained by unequal volume replacement with 2% CRT complied with the requirements of a skeleton dense texture. When the substitution ratio was 1.5 and 0.5, the high-temperature performance was better. In addition, when the substitution ratio was 0.5, the flexural strain energy density was the highest and the low-temperature performance was the best. Including considerations of economic benefits, it is recommended that the CRT content be 2% and the substitution ratio be 0.5

    Beyond Generic: Enhancing Image Captioning with Real-World Knowledge using Vision-Language Pre-Training Model

    Full text link
    Current captioning approaches tend to generate correct but "generic" descriptions that lack real-world knowledge, e.g., named entities and contextual information. Considering that Vision-Language Pre-Training (VLP) models master massive such knowledge from large-scale web-harvested data, it is promising to utilize the generalizability of VLP models to incorporate knowledge into image descriptions. However, using VLP models faces challenges: zero-shot inference suffers from knowledge hallucination that leads to low-quality descriptions, but the generic bias in downstream task fine-tuning hinders the VLP model from expressing knowledge. To address these concerns, we propose a simple yet effective method called Knowledge-guided Replay (K-Replay), which enables the retention of pre-training knowledge during fine-tuning. Our approach consists of two parts: (1) a knowledge prediction task on automatically collected replay exemplars to continuously awaken the VLP model's memory about knowledge, thus preventing the model from collapsing into the generic pattern; (2) a knowledge distillation constraint to improve the faithfulness of generated descriptions hence alleviating the knowledge hallucination. To evaluate knowledge-enhanced descriptions, we construct a novel captioning benchmark KnowCap, containing knowledge of landmarks, famous brands, special foods and movie characters. Experimental results show that our approach effectively incorporates knowledge into descriptions, outperforming strong VLP baseline by 20.9 points (78.7->99.6) in CIDEr score and 20.5 percentage points (34.0%->54.5%) in knowledge recognition accuracy. Our code and data is available at https://github.com/njucckevin/KnowCap.Comment: Accepted at ACM Multimedia (ACMMM) 202

    Spatiotemporal Variation Characteristics of Groundwater Storage and Its Driving Factors and Ecological Effects in Tibetan Plateau

    Get PDF
    Known as the “Asian Water Tower”, the Tibetan Plateau (TP) is a rich water resource and serves an important ecological function. Climate change may cause changes to the water cycle, and these changes may affect the alpine vegetation growth. However, the variation characteristics of groundwater storage (GWS) and its driving factors and associated ecological effects in the TP are poorly understood. In this study, terrestrial water storage changes retrieved by GRACE (Gravity Recovery and Climate Experiment) were combined with GLDAS (Global Land Data Assimilation System) to estimate the GWS changes in the TP. The temporal and spatial variation characteristics of GWS were identified using linear regression and the modified Mann–Kendall (MMK) test, respectively. The analyses showed that the GWS of the TP decreased at an average rate of −0.89 mm/a from January 2003 to December 2021, but since January 2016, it gradually recovered at a rate of 1.47 mm/a. This shows that the GWS in the eastern and northern parts of the TP is decreasing, while the GWS in the western and southern parts is increasing. The influence of climate change on GWS in time and space was determined using the correlation analysis method. Decreased precipitation and permafrost degradation caused by increasing temperatures will lead to a decrease in GWS. On the other hand, rising temperatures may result in an increase in GWS in regions where glaciers are distributed. In this study, the ecological effects were represented by the relationship between GWS and vegetation change. A decline in GWS means that the vegetation will not receive enough water, leading to a decrease in the NDVI and the eventual degradation of grassland to sand, desert, or other kinds of unused land on the TP. On the other hand, an increase in GWS would promote vegetation restoration. The results of this study offer a new opportunity to reveal the groundwater changes in a cryosphere region and to assess the impact of changes in hydrological conditions on ecology.</p
    • 

    corecore