41 research outputs found

    Theory on quench-induced pattern formation: Application to the isotropic to smectic-A phase transitions

    Full text link
    During catastrophic processes of environmental variations of a thermodynamic system, such as rapid temperature decreasing, many novel and complex patterns often form. To understand such phenomena, a general mechanism is proposed based on the competition between heat transfer and conversion of heat to other energy forms. We apply it to the smectic-A filament growth process during quench-induced isotropic to smectic-A phase transition. Analytical forms for the buckling patterns are derived and we find good agreement with experimental observation [Phys. Rev. {\bf E55} (1997) 1655]. The present work strongly indicates that rapid cooling will lead to structural transitions in the smectic-A filament at the molecular level to optimize heat conversion. The force associated with this pattern formation process is estimated to be in the order of 10−110^{-1} piconewton.Comment: 9 pages in RevTex form, with 3 postscript figures. Accepted by PR

    Diagnostic value of endoscopic appearance during ductoscopy in patients with pathological nipple discharge

    No full text
    Abstract Background To explore the features of ductoscopic appearance that may be diagnostic in patients with pathologic nipple discharge (PND) and to discuss the diagnostic criteria for intraductal tumors. Methods We reviewed 247 patients with PND but without a palpable mass who were evaluated using either surgical biopsy or excision. Data concerning patient age, duration of discharge, discharge color, and the details of endoscopic appearance were analyzed according to the pathological results. Results The postoperative diagnosis in 61 patients (24.70%) was a nonmass lesion, and 186 patients (76.52%) had an intraductal tumor. Among those with intraductal lesions, 10 patients (4.05%) had a malignant tumor, including 4 (1.62%) with ductal carcinoma in situ and 6 (2.43%) with invasive ductal carcinoma. On univariate analysis, patients of older age with spontaneous and bloody discharge were more likely to suffer from intraductal lesions. On logistic regression analysis, bloody nipple discharge, morphology, and a broad lesion base revealed by ductoscopy showed a statistically significant correlation with malignancy (p = 0.001, p < 0.001, p = 0.022, respectively). Conclusions Both clinical features and endoscopic appearance are significant for the precise diagnosis of an intraductal lesion seen on ductoscopy. The endoscopic features of bloody discharge, morphology, and a broad lesion base are independent risk factors for malignancy and represent new criteria for the diagnosis of patients with PND

    Highly Effective Near-Infrared Activating Triplet-Triplet Annihilation Upconversion for Photoredox Catalysis

    No full text
    Organic triplet-triplet annihilation upconversion (TTA-UC) materials have considerable promise in areas as broad as biology, solar energy harvesting, and photocatalysis. However, the development of highly efficient near-infrared (NIR) light activatable TTA-UC systems remains extremely challenging. In this work, we report on a method of systematically tailoring an annihilator to attain such outstanding systems. By chemical modifications of a commonly used perylene annihilator, we constructed a family of perylene derivatives that have simultaneously tailored triplet excited state energy (T1) and singlet excited state energy (S1), two key annihilator factors to determine TTA-UC performance. Via this method, we were able to tune the TTA-UC system from an endothermic type to an exothermic one, thus significantly elevating the upconversion performance of NIR light activatable TTA upconversion systems. In conjunction with the photosensitizer PdTNP (10 muM), the upconversion efficiency using the optimal annihilator (100 muM) identified in this study was measured to be 14.1% under the low-power density of NIR light (100 mW/cm(2), 720 nm). Furthermore, using such a low concentration of perylene derivative, we demonstrated that the optimal TTA-UC pair developed in our study can act as a highly effective light wavelength up-shifter to enable NIR light to drive a photoredox catalysis that otherwise requires visible light. We found that such an NIR driven method is highly effective and can even surpass directly visible light driven photoredox catalysis. This method is important for photoredox catalysis as NIR light can penetrate much deeper in colored photoredox catalysis reaction solutions, especially when done in a large-scale manner. Furthermore, this TTA-UC mediated photoredox catalysis reaction is found to be outdoor sunlight operable. Thus, our study provides a solution to enhance NIR activatable organic upconversion and set the stage for a wide array of applications that have previously been limited by the suboptimal efficiency of the existing TTA upconversion materials

    Additional file 1: of Diagnostic value of endoscopic appearance during ductoscopy in patients with pathological nipple discharge

    No full text
    Detail data of malignant tumors. Description of form: It is the detail data of malignant tumors, which includes age range, duration, spontaneous, quadrants, depth, endoscopic description, pathologic description and so on. They are the base data for analyzation. (XLS 19 kb

    Characteristics of Soil Organic Carbon in Croplands and Affecting Factors in Hubei Province

    No full text
    SOC storage (SOCS) plays a vital role in global climate change. Understanding the spatial pattern and features of soil organic carbon (SOC) and its influencing factors is important for increasing SOC fixation. However, few studies exist on the organic carbon reserves of farmland on a regional scale. This study revealed the SOCD and SOCS values and distribution using Hubei Province as a sampling region. The results demonstrated that the spatial distributions of farmland system carbon storage and density were uneven, and the spatial heterogeneity was related to geography, cultivated area, and soil type. The SOCD ranged from 0.559 to 10.613 kg/m2, with an average of 3.3710 ± 0.0337 kg/m2, and the soil carbon reserve of the farmland system was ~17.81 Tg. The SOCD varied with topography and soil type: in mountainous cultivated land, it was generally higher than that in hilly land and in the plains. However, the plain cultivated areas contained the highest carbon reserves. Within the farmland system, paddy soil, the dominant soil type, exhibited higher SOCD and larger SOC storage capacity. Soil types with the same physicochemical properties exhibited different organic carbon storage capacity in different geomorphic and regional environments. Specifically, paddy soil was found to have higher SOCD and SOCS than the other soil types, and its soil carbon storage capacity was high; the SOC reserves of wheat-rice tillage were the largest among the main tillage methods. Boosting the soil carbon sink requires fundamental improvement in soil properties by improving soil texture, using conservation tillage to increase soil organic matter, and reducing unnecessary human interference
    corecore