68 research outputs found
Quasiparticles as composite objects in the RVB superconductor
We study the nature of the superconducting state, the origin of d-wave
pairing, and elementary excitations of a resonating valence bond (RVB)
superconductor. We show that the phase string formulation of the t-J model
leads to confinement of bare spinon and holon excitations in the
superconducting state, though the vacuum is described by the RVB state. Nodal
quasiparticles are obtained as composite excitations of spinon and holon
excitations. The d-wave pairing symmetry is shown to arise from short range
antiferromagnetic correlations
Spectral function of the electron in a superconducting RVB state
We present a model calculation of the spectral function of an electron in a
superconducting resonating valence bond (RVB) state. The RVB state, described
by the phase-string mean field theory is characterized by three important
features: (i) spin-charge separation, (ii) short range antiferromagnetic
correlations, and (iii) holon condensation. The results of our calculation are
in good agreement with data obtained from Angle Resolved Photoemission
Spectroscopy (ARPES) in superconducting Bi 2212 at optimal doping
concentration.Comment: 4 pages, 3 figure
Understanding high-Tc cuprates based on the phase string theory of doped antiferromagnet
We present a self-consistent RVB theory which unifies the metallic
(superconducting) phase with the half-filling antiferromagnetic (AF) phase. Two
crucial factors in this theory include the RVB condensation which controls
short-range AF spin correlations and the phase string effect introduced by hole
hopping as a key doping effect. We discuss both the uniform and non-uniform
mean-field solutions and show the unique features of the characteristic spin
energy scale, superconducting transition temperature, and the phase diagram,
which are all consistent with the experimental measurements of high-
cuprates.Comment: 4 pages, 4 embeded eps figures, minor typos are corrected, to appear
in the proceedings of M2S-HTSC-VI conferenc
Spin-charge separation in the single hole doped Mott antiferromagnet
The motion of a single hole in a Mott antiferromagnet is investigated based
on the t-J model. An exact expression of the energy spectrum is obtained, in
which the irreparable phase string effect [Phys. Rev. Lett. 77, 5102 (1996)] is
explicitly present. By identifying the phase string effect with spin backflow,
we point out that spin-charge separation must exist in such a system: the doped
hole has to decay into a neutral spinon and a spinless holon, together with the
phase string. We show that while the spinon remains coherent, the holon motion
is deterred by the phase string, resulting in its localization in space. We
calculate the electron spectral function which explains the line shape of the
spectral function as well as the ``quasiparticle'' spectrum observed in
angle-resolved photoemission experiments. Other analytic and numerical
approaches are discussed based on the present framework.Comment: 16 pages, 9 figures; references updated; to appear in Phys. Rev.
Ginzburg-Landau Expansion in Non-Fermi Liquid Superconductors: Effect of the Mass Renormalization Factor
We reconsider the Ginzburg-Landau expansion for the case of a non-Fermi
liquid superconductor. We obtain analytical results for the Ginzburg-Landau
functional in the critical region around the superconducting phase transition,
T <= T_c, in two special limits of the model, i.e., the spin-charge separation
case and the anomalous Fermi liquid case. For both cases, in the presence of a
mass renormalization factor, we derived the form and the specific dependence of
the coherence length, penetration depth, specific heat jump at the critical
point, and the magnetic upper critical field. For both limits the obtained
results reduce to the usual BCS results for a two dimensional s-wave
superconductor. We compare our results with recent and relevant theoretical
work. The results for a d--wave symmetry order parameter do not change
qualitatively the results presented in this paper. Only numerical factors
appear additionally in our expressions.Comment: accepted for publication in Physical Review
Spin-Charge Separation in the Model: Magnetic and Transport Anomalies
A real spin-charge separation scheme is found based on a saddle-point state
of the model. In the one-dimensional (1D) case, such a saddle-point
reproduces the correct asymptotic correlations at the strong-coupling
fixed-point of the model. In the two-dimensional (2D) case, the transverse
gauge field confining spinon and holon is shown to be gapped at {\em finite
doping} so that a spin-charge deconfinement is obtained for its first time in
2D. The gap in the gauge fluctuation disappears at half-filling limit, where a
long-range antiferromagnetic order is recovered at zero temperature and spinons
become confined. The most interesting features of spin dynamics and transport
are exhibited at finite doping where exotic {\em residual} couplings between
spin and charge degrees of freedom lead to systematic anomalies with regard to
a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic
fluctuation with a small, doping-dependent energy scale is found, which is
characterized in momentum space by a Gaussian peak at (, ) with
a doping-dependent width (, is the doping
concentration). This commensurate magnetic fluctuation contributes a
non-Korringa behavior for the NMR spin-lattice relaxation rate. There also
exits a characteristic temperature scale below which a pseudogap behavior
appears in the spin dynamics. Furthermore, an incommensurate magnetic
fluctuation is also obtained at a {\em finite} energy regime. In transport, a
strong short-range phase interference leads to an effective holon Lagrangian
which can give rise to a series of interesting phenomena including linear-
resistivity and Hall-angle. We discuss the striking similarities of these
theoretical features with those found in the high- cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request;
minor revisions in the text and references have been made; To be published in
July 1 issue of Phys. Rev. B52, (1995
Spin fluctuations and pseudogap in the two-dimensional half-filled Hubbard model at weak coupling
Starting from the Hubbard model in the weak-coupling limit, we derive a
spin-fermion model where the collective spin excitations are described by a
non-linear sigma model. This result is used to compute the fermion spectral
function in the low-temperature regime where the
antiferromagnetic (AF) coherence length is exponentially large (``renormalized
classical'' regime). At the Fermi level, exhibits two
peaks around (with the mean-field gap), which are
precursors of the zero-temperature AF bands, separated by a pseudogap.Comment: 6 pages, 2 figures, revised versio
Stability of the doped antiferromagnetic state of the t-t'-Hubbard model
The next-nearest-neighbour hopping term t' is shown to stabilize the AF state
of the doped Hubbard model with respect to transverse perturbations in the
order- parameter by strongly suppressing the intraband particle-hole processes.
For a fixed sign of t', this stabilization is found to be significantly
different for electron and hole doping, which qualitatively explains the
observed difference in the degree of robustness of the AF state in the
electron-doped (Nd_{2-x}Ce_{x}CuO_{4}) and hole-doped (La_{2-x}Sr_{x}CuO_{4})
cuprates. The t'-U phase diagram is obtained for both signs of the t' term,
showing the different regions of stability and instability of the doped
antiferromagnet. Doping is shown to suppress the t'-induced frustration due to
the competing interaction J'. A study of transverse spin fluctuations in the
metallic AF state reveals that the decay of magnons into particle-hole
excitations yields an interesting low-energy result \Gamma \sim \omega for
magnon damping.Comment: 10 pages, 8 figure
Theoretical Study of One-dimensional Chains of Metal Atoms in Nanotubes
Using first-principles total-energy pseudopotential calculations, we have
studied the properties of chains of potassium and aluminum in nanotubes. For BN
tubes, there is little interaction between the metal chains and the tubes, and
the conductivity of these tubes is through carriers located at the inner part
of the tube. In contrast, for small radius carbon nanotubes, there are two
types of interactions: charge-transfer (dominant for alkali atoms) leading to
strong ionic cohesion, and hybridization (for multivalent metal atoms)
resulting in a smaller cohesion. For Al-atomic chains in carbon tubes, we show
that both effects contribute. New electronic properties related to these
confined atomic chains of metal are analyzed.Comment: 12 pages + 3 figure
Antiferromagnetism and single-particle properties in the two-dimensional half-filled Hubbard model: a non-linear sigma model approach
We describe a low-temperature approach to the two-dimensional half-filled
Hubbard model which allows us to study both antiferromagnetism and
single-particle properties. This approach ignores amplitude fluctuations of the
antiferromagnetic (AF) order parameter and is valid below a crossover
temperature which marks the onset of AF short-range order. Directional
fluctuations (spin waves) are described by a non-linear sigma model
(NLM) that we derive from the Hubbard model. At zero temperature and
weak coupling, our results are typical of a Slater antiferromagnet. The AF gap
is exponentially small; there are well-defined Bogoliubov quasi-particles
(QP's) (carrying most of the spectral weight) coexisting with a high-energy
incoherent excitation background. As increases, the Slater antiferromagnet
progressively becomes a Mott-Heisenberg antiferromagnet. The Bogoliubov bands
evolve into Mott-Hubbard bands separated by a large AF gap. A significant
fraction of spectral weight is transferred from the Bogoliubov QP's to
incoherent excitations. At finite temperature, there is a metal-insulator
transition between a pseudogap phase at weak coupling and a Mott-Hubbard
insulator at strong coupling. Finally, we point out that our results
straightforwardly translate to the half-filled attractive Hubbard model, where
the charge and pairing fluctuations combine to
form an order parameter with SO(3) symmetry.Comment: Revtex4, 19 pages, 14 figures; (v2) final version as publishe
- …