7,890 research outputs found
The NSNS High Energy Beam Transport Line
In the National Spallation Neutron Source (NSNS) design, a 180 meter long
transport line connects the 1 GeV linac to an accumulator ring. The linac beam
has a current of 28 mA, pulse length of 1 ms, and 60 Hz rep rate. The high
energy transport line consists of sixteen 60 degrees FODO cells, and
accommodates a 90 degrees achromatic bend, an energy compressor, collimators,
part of injection system, and enough diagnostic devices to measure the beam
quality before injection. To reduce the uncontrolled beam losses, this line has
nine beam halo scrapers and very tight tolerances on both transverse and
longitudinal beam dynamics under space charge conditions. The design of this
line is presented.Comment: 3 pages, transfer line desig
Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials
We study the superfluid-Mott-insulator transition of ultracold bosonic atoms
in a one-dimensional optical lattice with a double-well confining trap using
the density-matrix renormalization group. At low density, the system behaves
similarly as two separated ones inside harmonic traps. At high density,
however, interesting features appear as the consequence of the quantum
tunneling between the two wells and the competition between the "superfluid"
and Mott regions. They are characterized by a rich step-plateau structure in
the visibility and the satellite peaks in the momentum distribution function as
a function of the on-site repulsion. These novel properties shed light on the
understanding of the phase coherence between two coupled condensates and the
off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure
Marginal Fermi Liquid with a Two-Dimensional Patched Fermi Surface
We consider a model composed of Landau quasiparticle states with patched
Fermi surfaces (FS) sandwiched by states with flat FS to simulate the ``cold''
spot regions in cuprates. We calculate the one particle irreducible function
and the self-energy up to two-loop order. Using renormalization group arguments
we show that in the forward scattering channel the renormalized coupling
constant is never infrared stable due to the flat FS sectors. Furthemore we
show that the self-energy scales with energy as as , and thus the Fermi liquid state within each FS
patch is turned into a marginal Fermi liquid.Comment: 5 pages, 3 ps figure
Accurate determination of tensor network state of quantum lattice models in two dimensions
We have proposed a novel numerical method to calculate accurately the
physical quantities of the ground state with the tensor-network wave function
in two dimensions. We determine the tensor network wavefunction by a projection
approach which applies iteratively the Trotter-Suzuki decomposition of the
projection operator and the singular value decomposition of matrix. The norm of
the wavefunction and the expectation value of a physical observable are
evaluated by a coarse grain renormalization group approach. Our method allows a
tensor-network wavefunction with a high bond degree of freedom (such as D=8) to
be handled accurately and efficiently in the thermodynamic limit. For the
Heisenberg model on a honeycomb lattice, our results for the ground state
energy and the staggered magnetization agree well with those obtained by the
quantum Monte Carlo and other approaches.Comment: 4 pages 5 figures 2 table
Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity
In this article I give a pedagogical illustration of why the essential
problem of high-Tc superconductivity in the cuprates is about how an
antiferromagnetically ordered state can be turned into a short-range state by
doping. I will start with half-filling where the antiferromagnetic ground state
is accurately described by the Liang-Doucot-Anderson (LDA) wavefunction. Here
the effect of the Fermi statistics becomes completely irrelevant due to the no
double occupancy constraint. Upon doping, the statistical signs reemerge,
albeit much reduced as compared to the original Fermi statistical signs. By
precisely incorporating this altered statistical sign structure at finite
doping, the LDA ground state can be recast into a short-range antiferromagnetic
state. Superconducting phase coherence arises after the spin correlations
become short-ranged, and the superconducting phase transition is controlled by
spin excitations. I will stress that the pseudogap phenomenon naturally emerges
as a crossover between the antiferromagnetic and superconducting phases. As a
characteristic of non Fermi liquid, the mutual statistical interaction between
the spin and charge degrees of freedom will reach a maximum in a
high-temperature "strange metal phase" of the doped Mott insulator.Comment: 12 pages, 12 figure
Spectral function of the electron in a superconducting RVB state
We present a model calculation of the spectral function of an electron in a
superconducting resonating valence bond (RVB) state. The RVB state, described
by the phase-string mean field theory is characterized by three important
features: (i) spin-charge separation, (ii) short range antiferromagnetic
correlations, and (iii) holon condensation. The results of our calculation are
in good agreement with data obtained from Angle Resolved Photoemission
Spectroscopy (ARPES) in superconducting Bi 2212 at optimal doping
concentration.Comment: 4 pages, 3 figure
Magnetic Incommensurability in Doped Mott Insulator
In this paper we explore the incommensurate spatial modulation of spin-spin
correlations as the intrinsic property of the doped Mott insulator, described
by the model. We show that such an incommensurability is a direct
manifestation of the phase string effect introduced by doped holes in both one-
and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin
susceptibility in momentum space are in agreement with the neutron-scattering
measurement of cuprate superconductors in both position and doping dependence.
In particular, this incommensurate structure can naturally reconcile the
neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure
- …