11,760 research outputs found
Dense blocks of energetic ions driven by multi-petawatt lasers
Laser-driven ion accelerators have the advantages of compact size, high
density, and short bunch duration over conventional accelerators. Nevertheless,
it is still challenging to simultaneously enhance the yield and quality of
laser-driven ion beams for practical applications. Here we propose a scheme to
address this challenge via the use of emerging multi-petawatt lasers and a
density-modulated target. The density-modulated target permits its ions to be
uniformly accelerated as a dense block by laser radiation pressure. In
addition, the beam quality of the accelerated ions is remarkably improved by
embedding the target in a thick enough substrate, which suppresses hot electron
refluxing and thus alleviates plasma heating. Particle-in-cell simulations
demonstrate that almost all ions in a solid-density plasma of a few microns can
be uniformly accelerated to about 25% of the speed of light by a laser pulse at
an intensity around 1022 W/cm2. The resulting dense block of energetic ions may
drive fusion ignition and more generally create matter with unprecedented high
energy density.Comment: 18 pages, 4 figure
Spectral Analyses of the Nearest Persistent Ultraluminous X-Ray Source M33 X-8
We provide a detailed analysis of 12 XMM observations of the nearest
persistent extragalactic ultraluminous X-ray source (ULX), M33 X-8. No
significant spectral evolution is detected between the observations, therefore
we combine the individual observations to increase the signal-to-noise ratio
for spectral fitting. The combined spectra are best fitted by the
self-consistent p-free disk plus power-law component model with p =
0.571_{-0.030}^{+0.032}, kT_{in} = 1.38_{-0.08}^{+0.09} keV, and the flux ratio
of the p-free disk component to the power-law component being 0.63:0.37 in the
0.3 -- 10 keV band. The fitting indicates that the black hole in M33 X-8 is of
\sim 10 M_{\odot} and accretes at a super-Eddington rate (\sim 1.5 L_{Edd}),
and the phase of the accretion disk is close to a slim disk (p = 0.5). We
report, for the first time, that an extra power-law component is required in
addition to the p-free disk model for ULXs. In super-Eddington cases, the
power-law component may possibly result from the optically thin inner region f
the disk or a comptonized corona similar to that of a standard thin disk.Comment: 11 pages, 1 table, 2 figures, accepted by PAS
Multi-wavelength variability properties of Fermi blazar S5 0716+714
S5 0716+714 is a typical BL Lacertae object. In this paper we present the
analysis and results of long term simultaneous observations in the radio,
near-infrared, optical, X-ray and -ray bands, together with our own
photometric observations for this source. The light curves show that the
variability amplitudes in -ray and optical bands are larger than those
in the hard X-ray and radio bands and that the spectral energy distribution
(SED) peaks move to shorter wavelengths when the source becomes brighter, which
are similar to other blazars, i.e., more variable at wavelengths shorter than
the SED peak frequencies. Analysis shows that the characteristic variability
timescales in the 14.5 GHz, the optical, the X-ray, and the -ray bands
are comparable to each other. The variations of the hard X-ray and 14.5 GHz
emissions are correlated with zero-lag, so are the V band and -ray
variations, which are consistent with the leptonic models. Coincidences of
-ray and optical flares with a dramatic change of the optical
polarization are detected. Hadronic models do not have the same nature
explanation for these observations as the leptonic models. A strong optical
flare correlating a -ray flare whose peak flux is lower than the
average flux is detected. Leptonic model can explain this variability
phenomenon through simultaneous SED modeling. Different leptonic models are
distinguished by average SED modeling. The synchrotron plus synchrotron
self-Compton (SSC) model is ruled out due to the extreme input parameters.
Scattering of external seed photons, such as the hot dust or broad line region
emission, and the SSC process are probably both needed to explain the
-ray emission of S5 0716+714.Comment: 43 pages, 13 figures, 3 tables, to be appeared in Ap
Cascaded acceleration of proton beams in ultrashort laser-irradiated microtubes
A cascaded ion acceleration scheme is proposed by use of ultrashort
laser-irradiated microtubes. When the electrons of a microtube are blown away
by intense laser pulses, strong charge-separation electric fields are formed in
the microtube both along the axial and along the radial directions. By
controlling the time delay between the laser pulses and a pre-accelerated
proton beam injected along the microtube axis, we demonstrate that this proton
beam can be further accelerated by the transient axial electric field in the
laser-irradiated microtube. Moreover, the collimation of the injected proton
beam can be enhanced by the inward radial electric field. Numerical simulations
show that this cascaded ion acceleration scheme works efficiently even at
non-relativistic laser intensities, and it can be applied to injected proton
beams in the energy range from 1 to 100 MeV. Therefore, it is particularly
suitable for cascading acceleration of protons to higher energy.Comment: 13 pages, 4 figure
Topological Gauge Structure and Phase Diagram for Weakly Doped Antiferromagnets
We show that the topological gauge structure in the phase string theory of
the {\rm t-J} model gives rise to a global phase diagram of antiferromagnetic
(AF) and superconducting (SC) phases in a weakly doped regime. Dual confinement
and deconfinement of holons and spinons play essential roles here, with a
quantum critical point at a doping concentration . The complex
experimental phase diagram at low doping is well described within such a
framework.Comment: 4 pages, 2 figures, modified version, to appear in Phys. Rev. Let
- …