9,536 research outputs found

    The NSNS High Energy Beam Transport Line

    Get PDF
    In the National Spallation Neutron Source (NSNS) design, a 180 meter long transport line connects the 1 GeV linac to an accumulator ring. The linac beam has a current of 28 mA, pulse length of 1 ms, and 60 Hz rep rate. The high energy transport line consists of sixteen 60 degrees FODO cells, and accommodates a 90 degrees achromatic bend, an energy compressor, collimators, part of injection system, and enough diagnostic devices to measure the beam quality before injection. To reduce the uncontrolled beam losses, this line has nine beam halo scrapers and very tight tolerances on both transverse and longitudinal beam dynamics under space charge conditions. The design of this line is presented.Comment: 3 pages, transfer line desig

    Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity

    Full text link
    In this article I give a pedagogical illustration of why the essential problem of high-Tc superconductivity in the cuprates is about how an antiferromagnetically ordered state can be turned into a short-range state by doping. I will start with half-filling where the antiferromagnetic ground state is accurately described by the Liang-Doucot-Anderson (LDA) wavefunction. Here the effect of the Fermi statistics becomes completely irrelevant due to the no double occupancy constraint. Upon doping, the statistical signs reemerge, albeit much reduced as compared to the original Fermi statistical signs. By precisely incorporating this altered statistical sign structure at finite doping, the LDA ground state can be recast into a short-range antiferromagnetic state. Superconducting phase coherence arises after the spin correlations become short-ranged, and the superconducting phase transition is controlled by spin excitations. I will stress that the pseudogap phenomenon naturally emerges as a crossover between the antiferromagnetic and superconducting phases. As a characteristic of non Fermi liquid, the mutual statistical interaction between the spin and charge degrees of freedom will reach a maximum in a high-temperature "strange metal phase" of the doped Mott insulator.Comment: 12 pages, 12 figure

    Spin-roton excitations in the cuprate superconductors

    Full text link
    We identify a new kind of elementary excitations, spin-rotons, in the doped Mott insulator. They play a central role in deciding the superconducting transition temperature Tc, resulting in a simple Tc formula,Tc=Eg/6, with Eg as the characteristic energy scale of the spin rotons. We show that the degenerate S=1 and S=0 rotons can be probed by neutron scattering and Raman scattering measurements, respectively, in good agreement with the magnetic resonancelike mode and the Raman A1g mode observed in the high-Tc cuprates.Comment: 10 pages, 9 figure

    Phase diagram of the frustrated, spatially anisotropic S=1 antiferromagnet on a square lattice

    Full text link
    We study the S=1 square lattice Heisenberg antiferromagnet with spatially anisotropic nearest neighbor couplings J1xJ_{1x}, J1yJ_{1y} frustrated by a next-nearest neighbor coupling J2J_{2} numerically using the density-matrix renormalization group (DMRG) method and analytically employing the Schwinger-Boson mean-field theory (SBMFT). Up to relatively strong values of the anisotropy, within both methods we find quantum fluctuations to stabilize the N\'{e}el ordered state above the classically stable region. Whereas SBMFT suggests a fluctuation-induced first order transition between the N\'{e}el state and a stripe antiferromagnet for 1/3≤J1x/J1y≤11/3\leq J_{1x}/J_{1y}\leq 1 and an intermediate paramagnetic region opening only for very strong anisotropy, the DMRG results clearly demonstrate that the two magnetically ordered phases are separated by a quantum disordered region for all values of the anisotropy with the remarkable implication that the quantum paramagnetic phase of the spatially isotropic J1J_{1}-J2J_{2} model is continuously connected to the limit of decoupled Haldane spin chains. Our findings indicate that for S=1 quantum fluctuations in strongly frustrated antiferromagnets are crucial and not correctly treated on the semiclassical level.Comment: 10 pages, 10 figure

    Magnetic Incommensurability in Doped Mott Insulator

    Full text link
    In this paper we explore the incommensurate spatial modulation of spin-spin correlations as the intrinsic property of the doped Mott insulator, described by the t−Jt-J model. We show that such an incommensurability is a direct manifestation of the phase string effect introduced by doped holes in both one- and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin susceptibility in momentum space are in agreement with the neutron-scattering measurement of cuprate superconductors in both position and doping dependence. In particular, this incommensurate structure can naturally reconcile the neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure

    Mean-Field Description of Phase String Effect in the t−Jt-J Model

    Full text link
    A mean-field treatment of the phase string effect in the t−Jt-J model is presented. Such a theory is able to unite the antiferromagnetic (AF) phase at half-filling and metallic phase at finite doping within a single theoretical framework. We find that the low-temperature occurrence of the AF long range ordering (AFLRO) at half-filling and superconducting condensation in metallic phase are all due to Bose condensations of spinons and holons, respectively, on the top of a spin background described by bosonic resonating-valence-bond (RVB) pairing. The fact that both spinon and holon here are bosonic objects, as the result of the phase string effect, represents a crucial difference from the conventional slave-boson and slave-fermion approaches. This theory also allows an underdoped metallic regime where the Bose condensation of spinons can still exist. Even though the AFLRO is gone here, such a regime corresponds to a microscopic charge inhomogeneity with short-ranged spin ordering. We discuss some characteristic experimental consequences for those different metallic regimes. A perspective on broader issues based on the phase string theory is also discussed.Comment: 18 pages, five figure
    • …
    corecore