13,635 research outputs found

    Corrected confidence intervals for secondary parameters following sequential tests

    Full text link
    Corrected confidence intervals are developed for the mean of the second component of a bivariate normal process when the first component is being monitored sequentially. This is accomplished by constructing a first approximation to a pivotal quantity, and then using very weak expansions to determine the correction terms. The asymptotic sampling distribution of the renormalised pivotal quantity is established in both the case where the covariance matrix is known and when it is unknown. The resulting approximations have a simple form and the results of a simulation study of two well-known sequential tests show that they are very accurate. The practical usefulness of the approach is illustrated by a real example of bivariate data. Detailed proofs of the main results are provided.Comment: Published at http://dx.doi.org/10.1214/074921706000000617 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Quasiparticles as composite objects in the RVB superconductor

    Full text link
    We study the nature of the superconducting state, the origin of d-wave pairing, and elementary excitations of a resonating valence bond (RVB) superconductor. We show that the phase string formulation of the t-J model leads to confinement of bare spinon and holon excitations in the superconducting state, though the vacuum is described by the RVB state. Nodal quasiparticles are obtained as composite excitations of spinon and holon excitations. The d-wave pairing symmetry is shown to arise from short range antiferromagnetic correlations

    Spin relaxation time, spin dephasing time and ensemble spin dephasing time in nn-type GaAs quantum wells

    Full text link
    We investigate the spin relaxation and spin dephasing of nn-type GaAs quantum wells. We obtain the spin relaxation time T1T_1, the spin dephasing time T2T_2 and the ensemble spin dephasing time T2∗T_2^{\ast} by solving the full microscopic kinetic spin Bloch equations, and we show that, analogous to the common sense in an isotropic system for conduction electrons, T1T_1, T2T_2 and T2∗T_2^{\ast} are identical due to the short correlation time. The inhomogeneous broadening induced by the D'yakonov-Perel term is suppressed by the scattering, especially the Coulomb scattering, in this system.Comment: 4 pages, 2 figures, to be published in Phys. Lett.

    Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials

    Full text link
    We study the superfluid-Mott-insulator transition of ultracold bosonic atoms in a one-dimensional optical lattice with a double-well confining trap using the density-matrix renormalization group. At low density, the system behaves similarly as two separated ones inside harmonic traps. At high density, however, interesting features appear as the consequence of the quantum tunneling between the two wells and the competition between the "superfluid" and Mott regions. They are characterized by a rich step-plateau structure in the visibility and the satellite peaks in the momentum distribution function as a function of the on-site repulsion. These novel properties shed light on the understanding of the phase coherence between two coupled condensates and the off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure

    Exceeding the Manley-Rowe quantum efficiency limit in an optically pumped THz amplifier

    Get PDF
    Using a microscopic theory based on the Maxwell-semiconductor Bloch equations, we investigate the possibility of an optically-assisted electrically-driven THz quantum cascade laser. Whereas in optical conversion schemes the power conversion efficiency is limited by the Manley-Rowe relation, the proposed optically-assisted scheme can achieve higher efficiency by coherently recovering the optical pump energy. Furthermore, due to quantum coherence effects the detrimental effects of scattering are mitigated

    Measurements of the effect of horizontal variability of atmospheric backscatter on dial measurements

    Get PDF
    The horizontal variability of atmospheric backscatter may have a substantial effect on how Differential Absorption Lidar (DIAL) data must be taken and analyzed. To minimize errors, lidar pulse pairs are taken with time separations which are short compared to the time scales associated with variations in atmospheric backscatter. To assess the atmospheric variability for time scales which are long compared to the lidar pulse repetition rate, the variance of the lidar return signal in a given channel can be computed. The variances of the on-line, off-line, and ration of the on-line to off-line signals at given altitudes obtained with the dual solid-state Alexandrite laser system were calculated. These evaluations were made for both down-looking aircraft and up-looking ground-based lidar data. Data were taken with 200 microsecond separation between on-line and off-line laser pulses, 30 m altitude resolution, 5 Hz repetition rate, and the signal were normalized for outgoing laser energy
    • …
    corecore