42 research outputs found
Genome-wide Association Study of Birth and Weaning Weights in Brangus Beef Cattle
The objective of this study was to map quantitative trait loci (QTL) associated with birth weight and weaning weight in Brangus beef cattle. A total of 6 significant QTL over 4 chromosomes were identified. Two QTL were common to both traits. The genome-wide association study (GWAS) results could help us understand the biological process of growth in Brangus. Further analyses are needed to find and validate the casual mutations responsible for these QTL
Identifying Chromosomal Recombinations in Beef Cattle from Genotyped Parent-Offspring Pairs
This study investigated meiotic recombination in two breeds of cattle by comparing phased SNP haplotypes in sire-offspring pairs. The positions and number of recombination events were identified. The number of recombination events varies between individuals and is a heritable trait. A genome-wide association analysis identified quantitative trait loci (QTL) associated with variation in the number of recombination events. Regions that had more recombination events than expected were identified in both breeds, and many of these hotspots were in common. Recombination is important biologically because it is the mechanism for reassembling paternal and maternal alleles. Recombination impacts the accuracy of imputation, a commonly-used approach to infer the genotypes of some individuals based on genotypes of others
Impact of Pedigree Information and Genome Assembly Errors on Inference of SNP Haplotypes in Cattle
The impact of pedigree information and SNP location determined from either the UMD3.1 genome sequence assembly or the USDA-AIPL map on phasing accuracy were evaluated for 2 chromosomes in 2,778 parent verified Angus sire/offspring pairs. DAGPHASE (Druet and Georges, 2010), using a single generation pedigree was superior to BEAGLE software (Browning and Browning, 2007) for phasing. Results based on USDA-AIPL map are closer to expectation than those based on UMD3.1, but the difference is not significant. Recombination hotspots weredetected near 4 and 82Mb on BTA14, and near 25Mb on BTA15
Prediction Accuracy of Pedigree and Genomic Estimated Breeding Values over Generations in Layer Chickens
This study investigated the accuracy of estimated breeding values (EBV) over different training generations in layer chickens using pedigree and marker-based models. On average, the accuracy of EBV based on markers was higher than that based on pedigree. The accuracy of all methods increased with an increase in the number of generations in training data, but slightly dropped or remained even after including training generations far apart from validation
Microbiome‑driven breeding strategy potentially improves beef fatty acid profile benefiting human health and reduces methane emissions
BACKGROUND: Healthier ruminant products can be achieved by adequate manipulation of the rumen microbiota to increase the flux of beneficial fatty acids reaching host tissues. Genomic selection to modify the microbiome function provides a permanent and accumulative solution, which may have also favourable consequences in other traits of interest (e.g. methane emissions). Possibly due to a lack of data, this strategy has never been explored. RESULTS: This study provides a comprehensive identification of ruminal microbial mechanisms under host genomic influence that directly or indirectly affect the content of unsaturated fatty acids in beef associated with human dietary health benefits C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3 or cis-9, trans-11 C18:2 and trans-11 C18:1 in relation to hypercholesterolemic saturated fatty acids C12:0, C14:0 and C16:0, referred to as N3 and CLA indices. We first identified that ~27.6% (1002/3633) of the functional core additive log-ratio transformed microbial gene abundances (alr-MG) in the rumen were at least moderately host-genomically influenced (HGFC). Of these, 372 alr-MG were host-genomically correlated with the N3 index (n=290), CLA index (n=66) or with both (n=16), indicating that the HGFC influence on beef fatty acid composition is much more complex than the direct regulation of microbial lipolysis and biohydrogenation of dietary lipids and that N3 index variation is more strongly subjected to variations in the HGFC than CLA. Of these 372 alr-MG, 110 were correlated with the N3 and/or CLA index in the same direction, suggesting the opportunity for enhancement of both indices simultaneously through a microbiome-driven breeding strategy. These microbial genes were involved in microbial protein synthesis (aroF and serA), carbohydrate metabolism and transport (galT, msmX), lipopolysaccharide biosynthesis (kdsA, lpxD, lpxB), or flagellar synthesis (flgB, fliN) in certain genera within the Proteobacteria phyla (e.g. Serratia, Aeromonas). A microbiome-driven breeding strategy based on these microbial mechanisms as sole information criteria resulted in a positive selection response for both indices (1.36±0.24 and 0.79±0.21 sd of N3 and CLA indices, at 2.06 selection intensity). When evaluating the impact of our microbiome-driven breeding strategy to increase N3 and CLA indices on the environmental trait methane emissions (g/kg of dry matter intake), we obtained a correlated mitigation response of −0.41±0.12 sd. CONCLUSION: This research provides insight on the possibility of using the ruminal functional microbiome as information for host genomic selection, which could simultaneously improve several microbiome-driven traits of interest, in this study exemplified with meat quality traits and methane emissions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01352-6
Estimation of Haplotype Diversity and Recombination Rate on Chromosomes 5 and 15 in Layer Chickens
The objectives of this study were to compare the performance of different haplotype reconstruction approaches, characterize haplotype diversity and identify recombination hotspots on chromosomes 5 and 15 in layer chicken. BEAGLE, DAGPHASE, and fastPHASE software recognized fewer haplotypes than two other methods. In total, 10 and 2 recombination hotspots were identified on chromosomes 5 and 15, respectively. Further study is needed to confirm these regions with high recombination rate and high haplotype diversity
Correction:Microbiome-driven breeding strategy potentially improves beef fatty acid profile benefiting human health and reduces methane emissions
BACKGROUND: Healthier ruminant products can be achieved by adequate manipulation of the rumen microbiota to increase the flux of beneficial fatty acids reaching host tissues. Genomic selection to modify the microbiome function provides a permanent and accumulative solution, which may have also favourable consequences in other traits of interest (e.g. methane emissions). Possibly due to a lack of data, this strategy has never been explored. RESULTS: This study provides a comprehensive identification of ruminal microbial mechanisms under host genomic influence that directly or indirectly affect the content of unsaturated fatty acids in beef associated with human dietary health benefits C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3 or cis-9, trans-11 C18:2 and trans-11 C18:1 in relation to hypercholesterolemic saturated fatty acids C12:0, C14:0 and C16:0, referred to as N3 and CLA indices. We first identified that ~27.6% (1002/3633) of the functional core additive log-ratio transformed microbial gene abundances (alr-MG) in the rumen were at least moderately host-genomically influenced (HGFC). Of these, 372 alr-MG were host-genomically correlated with the N3 index (n=290), CLA index (n=66) or with both (n=16), indicating that the HGFC influence on beef fatty acid composition is much more complex than the direct regulation of microbial lipolysis and biohydrogenation of dietary lipids and that N3 index variation is more strongly subjected to variations in the HGFC than CLA. Of these 372 alr-MG, 110 were correlated with the N3 and/or CLA index in the same direction, suggesting the opportunity for enhancement of both indices simultaneously through a microbiome-driven breeding strategy. These microbial genes were involved in microbial protein synthesis (aroF and serA), carbohydrate metabolism and transport (galT, msmX), lipopolysaccharide biosynthesis (kdsA, lpxD, lpxB), or flagellar synthesis (flgB, fliN) in certain genera within the Proteobacteria phyla (e.g. Serratia, Aeromonas). A microbiome-driven breeding strategy based on these microbial mechanisms as sole information criteria resulted in a positive selection response for both indices (1.36±0.24 and 0.79±0.21 sd of N3 and CLA indices, at 2.06 selection intensity). When evaluating the impact of our microbiome-driven breeding strategy to increase N3 and CLA indices on the environmental trait methane emissions (g/kg of dry matter intake), we obtained a correlated mitigation response of −0.41±0.12 sd. CONCLUSION: This research provides insight on the possibility of using the ruminal functional microbiome as information for host genomic selection, which could simultaneously improve several microbiome-driven traits of interest, in this study exemplified with meat quality traits and methane emissions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01352-6
Including microbiome information in a multi-trait genomic evaluation: a case study on longitudinal growth performance in beef cattle
Background: Growth rate is an important component of feed conversion efficiency in cattle and varies across the different stages of the finishing period. The metabolic effect of the rumen microbiome is essential for cattle growth, and investigating the genomic and microbial factors that underlie this temporal variation can help maximize feed conversion efficiency at each growth stage. Results: By analysing longitudinal body weights during the finishing period and genomic and metagenomic data from 359 beef cattle, our study demonstrates that the influence of the host genome on the functional rumen microbiome contributes to the temporal variation in average daily gain (ADG) in different months (ADG1, ADG2, ADG3, ADG4). Five hundred and thirty-three additive log-ratio transformed microbial genes (alr-MG) had non-zero genomic correlations (rg) with at least one ADG-trait (ranging from |0.21| to |0.42|). Only a few alr-MG correlated with more than one ADG-trait, which suggests that a differential host-microbiome determinism underlies ADG at different stages. These alr-MG were involved in ribosomal biosynthesis, energy processes, sulphur and aminoacid metabolism and transport, or lipopolysaccharide signalling, among others. We selected two alternative subsets of 32 alr-MG that had a non-uniform or a uniform rg sign with all the ADG-traits, regardless of the rg magnitude, and used them to develop a microbiome-driven breeding strategy based on alr-MG only, or combined with ADG-traits, which was aimed at shaping the rumen microbiome towards increased ADG at all finishing stages. Combining alr-MG information with ADG records increased prediction accuracy of genomic estimated breeding values (GEBV) by 11 to 22% relative to the direct breeding strategy (using ADG-traits only), whereas using microbiome information, only, achieved lower accuracies (from 7 to 41%). Predicted selection responses varied consistently with accuracies. Restricting alr-MG based on their rg sign (uniform subset) did not yield a gain in the predicted response compared to the non-uniform subset, which is explained by the absence of alr-MG showing non-zero rg at least with more than one of the ADG-traits. Conclusions: Our work sheds light on the role of the microbial metabolism in the growth trajectory of beef cattle at the genomic level and provides insights into the potential benefits of using microbiome information in future genomic breeding programs to accurately estimate GEBV and increase ADG at each finishing stage in beef cattle