52 research outputs found

    Effect of Da-Cheng-Qi Decoction on Pancreatitis-Associated Intestinal Dysmotility in Patients and in Rat Models

    Get PDF
    The impairment of intestinal motility and related infectious complications are the predominant clinical phenomenon in patients with severe acute pancreatitis (SAP). We aimed to investigate the effects of Da-Cheng-Qi decoction (DCQD) on the gastrointestinal injury in SAP patients and the potential mechanism involved in rats. DCQD was enema administered to 70 patients for 7 days in West China Hospital. Mortality and organ failure during admission were observed and blood samples for laboratory analysis were collected. We also experimentally examined plasma inflammatory cytokines in rat serum and carried the morphometric studies of the gut. Intestinal propulsion index and serum and tissue vasoactive intestinal peptide (VIP) were also detected. Though DCQD did not affect the overall incidence of organ failure, it shortened the average time of paralytic intestinal obstruction and decreased the morbidity of infectious complications in patients with SAP. Compared with untreated rats, the DCQD lowered the levels of proinflammatory cytokine and decreased the mean pathological intestinal lesion scores. The VIP level in intestinal tissue or serum in DCQD group was obviously lowered and intestinal propulsion index was significantly improved. In conclusion, DCQD has good effect on pancreatitis-associated intestinal dysmotility in patients and in rat models

    Efficient Characterizations of Multiphoton States with Ultra-thin Integrated Photonics

    Full text link
    Metasurface enables the generation and manipulation of multiphoton entanglement with flat optics, providing a more efficient platform for large-scale photonic quantum information processing. Here, we show that a single metasurface optical chip would allow more efficient characterizations of multiphoton entangled states, such as shadow tomography, which generally requires fast and complicated control of optical setups to perform projective measurements in different bases, a demanding task using conventional optics. The compact and stable device here allows implementations of general positive observable value measures with a reduced sample complexity and significantly alleviates the experimental complexity to implement shadow tomography. Integrating self-learning and calibration algorithms, we observe notable advantages in the reconstruction of multiphoton entanglement, including using fewer measurements, having higher accuracy, and being robust against optical loss. Our work unveils the feasibility of metasurface as a favorable integrated optical device for efficient characterization of multiphoton entanglement, and sheds light on scalable photonic quantum technologies with ultra-thin integrated optics.Comment: 15 pages, 9 figure

    Source Contributions to Carbon Monoxide Concentrations During KORUS‐AQ Based on CAM‐chem Model Applications

    Get PDF
    We investigate regional sources contributing to CO during the Korea United States Air Quality (KORUS-AQ) campaign conducted over Korea (1 May to 10 June 2016) using 17 tagged CO simulations from the Community Atmosphere Model with chemistry (CAM-chem). The simulations use three spatial resolutions, three anthropogenic emission inventories, two meteorological fields, and nine emission scenarios. These simulations are evaluated against measurements from the DC-8 aircraft and Measurements Of Pollution In The Troposphere (MOPITT). Results show that simulations using bottom-up emissions are consistently lower (bias: -34 to -39%) and poorer performing (Taylor skill: 0.38-0.61) than simulations using alternative anthropogenic emissions (bias: -6 to -33%; Taylor skill: 0.48-0.86), particularly for enhanced Asian CO and volatile organic compound (VOC) emission scenarios, suggesting underestimation in modeled CO background and emissions in the region. The ranges of source contributions to modeled CO along DC-8 aircraft from Korea and southern (90 degrees E to 123 degrees E, 20 degrees N to 29 degrees N), middle (90 degrees E to 123 degrees E, 29 degrees N to 38.5 degrees N), and northern (90 degrees E to 131.5 degrees E, 38.5 degrees N to 45 degrees N) East Asia (EA) are 6-13%, similar to 5%, 16-28%, and 9-18%, respectively. CO emissions from middle and northern EA can reach Korea via transport within the boundary layer, whereas those from southern EA are transported to Korea mainly through the free troposphere. Emission contributions from middle EA dominate during continental outflow events (29-51%), while Korean emissions play an overall more important role for ground sites (up to 25-49%) and plumes within the boundary layer (up to 25-44%) in Korea. Finally, comparisons with four other source contribution approaches (FLEXPART 9.1 back trajectory calculations driven by Weather Research and Forecasting (WRF) WRF inert tracer, China signature VOCs, and CO to CO2 enhancement ratios) show general consistency with CAM-chem.National Science Foundation (NSF); U.S. Department of Energy (DOE); National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Program; NCAR Advanced Study Program Postdoctoral Fellowship; Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [2-1505, 2-1803]; National Science Foundation; NASA [NNX16AD96G, NNX16AE16G, NNX17AG39G]6 month embargo; published online: 1 February 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Bending-Induced Cross-Sectional Deformation of Cold-Formed Steel Channel-Section Beams

    No full text
    In practice, the cold-formed steel structures are widely used, and their geometrical nonlinearity is of great significance in structural design. However, the current analytical solutions are only applied to linear problems, and the nonlinear problems are mostly considered by commercial finite element software. This paper presents an analytical model to describe the bending-induced cross-sectional deformation in cold-formed steel channel-section beams when subjected to transverse bending loads. The nonlinear effect of cross-sectional deformation on the relationship between the overall bending curvature and applied moment is examined. A parametric study is also carried out to examine how the flange width, lip length, and thickness of the section affect the cross-sectional deformation and corresponding nonlinear bending behavior of the beams
    • 

    corecore