26 research outputs found

    Active and intelligent control onto thermal behaviors of a motorized spindle unit

    Get PDF
    Motorized spindle unit is the core component of a precision CNC machine tool. Its thermal errors perform generally serious disturbance onto the accuracy and accuracy stability of precision machining. Traditionally, the effectiveness of the compensation method for spindle thermal errors is restricted by machine freedom degrees. For this problem, this paper presents an active, differentiated, and intelligent control method onto spindle thermal behaviors, to realize comprehensive and accurate suppressions onto spindle thermal errors. Firstly, the mechanism of spindle heat generation/dissipation-structural temperature-thermal deformation error is analyzed. This modeling conveys that the constantly least spindle thermal errors can be realized by differentiated and active controls onto its structural thermal behaviors. Based on this principle, besides, the active control method is developed by a combination of extreme learning machine (ELM) and genetic algorithm (GA). The aim is to realize the general applicability of this active and intelligent control algorithm, for the spindle time-varying thermal behaviors. Consequently, the contrasting experiments clarify that the proposed active and intelligent control method can suppress accurately and synchronously all kinds of spindle thermal errors. It is significantly beneficial for the improvements of the accuracy and accuracy stability of motorized spindle units

    Complete chloroplast genomes of 11 Sabia samples: Genomic features, comparative analysis, and phylogenetic relationship

    Get PDF
    The genus Sabia is a woody climber belonging to the family Sabiaceae, order Proteales. Several species of this genus have been utilized as medicines for treating diseases, such as rheumatic arthritis, traumatism, hepatitis, etc. However, the lack of molecular data has prevented the accurate identification and refinement of taxonomic relationships in this genus. In this study, chloroplast genomes of 11 samples of the genus Sabia were assembled and analyzed. These chloroplast genomes showed a typical quadripartite structure and ranged in length from 160,956 to 162,209 bp. The structure of the genomes was found to be relatively conserved, with 130 genes annotated, including 85 coding genes, 37 tRNA genes, and eight rRNA genes. A total of 78–98 simple sequence repeats and 52–61 interspersed repeats were detected. Sequence alignment revealed 11 highly variable loci in chloroplast genomes. Among these loci, ndhF-ndhD achieved a remarkably higher resolution than the other regions. In addition, phylogenetic analysis indicated that Sect. Pachydiscus and Sect. Sabia of Sabia did not form two separate monophyletic groups. The divergence time calculated based on the Reltime method indicated that the evolutionary branches of Sabia and Meliosma started to form approximately 85.95 million years ago (Mya), and the species within Sabia began to diverge approximately 7.65 Mya. In conclusion, our study provides a basis for comprehensively exploring the phylogenetic relationships of Sabia. It also provides a methodological basis and data support for establishing a standardized and scientific identification system for this genus

    Analysis of digestion of rice planthopper by Pardosa pseudoannulata based on CO-I gene

    No full text
    In order to systematically study the predatory behavior and digestion regularity of spiders, real-time fluorescence quantification PCR technique was used to detect the number of CO-I genes in Pardosa pseudoannulata after it preyed on rice planthoppers in different temperatures within different periods. At 28 °C, 0, 1, 2, 4, 8, 16, and 24 h after P. pseudoannulata preyed on rich planthopper, DNA was extracted from cephalothorax and abdomen of P. pseudoannulata. Routine PCR and real-time fluorescence PCR techniques were employed for CO-I gene amplification. The results show that: The prey liquid was temporarily stored in the sucking stomach of the spider head within 2 h after prey, and gradually transferred to the midgut of the abdomen with the prolongation of time. After 4 h, CO-I gene residues of rice planthopper in the cephalothorax gradually decreased. The CO-I gene of rice planthopper was basically transferred to the abdomen after 16 h. During 0–1 h, food contained in abdominal midgut and other digestive organs was very small, CO-I gene detection was not obvious. Over time, food entered into the midgut from the sucking stomach for digestion. During 2–4 h, CO-I gene amount increased, at 2–4 h, detected CO-I gene residue reached the peak; but rapidly declined after 8, 16, and 24 h, even it is still detectable. The results at different temperatures reveal that: As the temperature increased from 26 °C to 32 °C, CO-I gene residues of rich planthopper in cephalothorax and abdomen of P. pseudoannulata gradually decreased, which indicated that the digestion rate increased with the increase of temperature with some range. However, when the temperature continued to increase to 34 °C, the digestion rate decreased

    Selective reduction leaching of vanadium and iron by oxalic acid from spent V2O5-WO3/TiO2 catalyst

    No full text
    Large amounts of selective catalytic reduction (SCR) denitrification catalysts with poor mechanical property are disposed and difficult to be regenerated, resulting in environmental pollution. For spent SCR denitrification catalyst, the ratio of V4+ /V5+ decreased by about 45% and Fe impurity increased &gt; 10 times, which influenced the recycling of the supporter. Selective leaching of V and Fe by oxalic acid and its reaction mechanism were investigated. Under the optimized leaching condition: oxalic acid concentration of 1.0 mol/L, reaction temperature of 90 degrees C, liquid-to-solid ratio of 20 mL/g, &lt; 75 mu m particle size and leaching time of 180 min, the leaching efficiencies of V and Fe reached over 84% and 96%, respectively. The reaction mechanism for the selective leaching of these metals was determined through UV-VIS spectrophotometry and CO2 emission analyses. After dissolution and complexation, VO2+ and Fe3+ were reduced to water-soluble cations VO2+ and Fe3+. When V and Fe was in the specific forms of VOC2O4 and Fe(C2O4)(2)(2-). at 0.33 pH, high leaching efficiency was obtained. It indicated that redox reactions led to the broken of dissolution and complexation equilibriums for VO2+, VO+ and Fe3+. For W and Ti, only dissolution and complexation reactions occurred and the leaching efficiency was limited by the solubility. The leaching residue with anatase TiO2 was recovered as carrier and used for synthesis of a new SCR catalyst.</p

    Study of the V2O5-WO3/TiO2 Catalyst Synthesized from Waste Catalyst on Selective Catalytic Reduction of NOx by NH3

    No full text
    V2O5-WO3/TiO2 catalysts were synthesized from waste selective catalytic reduction (SCR) catalyst through oxalic acid leaching and impregnating with various V2O5 mass loadings. The denitration (deNO(x)) activity and physiochemical properties of the catalysts were investigated. All the catalysts were characterized by N-2 adsorption/desorption, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and H-2-temperature programmed reduction. The evaluation result revealed that the deNOx activity of newly synthesized catalyst with 1.0% V2O5 was almost recovered to the level of fresh catalyst, with NO conversion being recovered to 91% at 300 C-omicron, and it also showed a good resistance to SO2 and H2O. The characterization results showed that the decrease of impurities, partial recovery of the V4+/V5+ ratio, and increased reducibility were mainly responsible for the recovery of catalytic activity.</p

    Recovery of tungsten and titanium from spent SCR catalyst by sulfuric acid leaching process

    No full text
    The widespread use of selective catalytic reduction (SCR) catalysts has resulted in a large accumulation of spent SCR catalysts. These spent catalysts present a significant risk of environmental hazards and potential for resource recovery. This paper presents a feasible process, which works using atmospheric pressure leaching, of tungsten and titanium recovery from spent SCR catalysts. In this new method, titanium and tungsten are simultaneously leached with sulfuric acid as the leaching agent. After hydrolysis and calcination, titanium-tungsten powder with low impurity and reconstructed pore properties was obtained. The optimal conditions for the leaching of Ti and W were as follows: temperature, 150 degrees C; reaction time, 60 min; H2SO4 concentration, 80 %; mass ratio of H2SO4/TiO2, 3:1; and diluted H2SO4 concentration, 20 % after reaction. With these optimum conditions, the leaching efficiency of Ti and W were found to be 95.92 % and 93.83 %, respectively. The ion speciation and reaction mechanism of W were studied by Raman spectroscopy, FTIR, and UV-vis. The formation of heteropolytungstate with a Keggin structure is essential for the synergistic leaching of Ti and W, as the heteropolytungstate can be stably dissolved in the acid solution. During the hydrolysis process, heteropolytungstate gradually decomposed into Ti4+ and WO42- due to the formation of insoluble Ti(OH)(4) from Ti4+ in the solution. This study demonstrated an effective method for synergistic recovery of titanium and tungsten from the spent SCR catalyst

    Simultaneous removal of SO2 and NOx from flue gas using (NH4)(2)S2O3/steel slag slurry combined with ozone oxidation

    No full text
    The use of thiosulfate salt (S2O32-), a low-cost reductant, as an absorbent for NO2 removal has been rarely reported. In this study, we propose a method that combines ozone oxidation and (NH4)(2)S2O3/steel slag slurry spraying to simultaneously remove sulfur dioxide (SO2) and nitrogen oxides (NOx) from flue gas. We investigated the effects of operation conditions on the simultaneous removal efficiencies of SO2 and NOx. Results showed that SO2 removal efficiency was affected by pH, whereas NOx removal efficiency was mostly influenced by (NH4)(2)S2O3 concentration, reaction temperature, and pH level. Under optimal operation conditions, removal efficiencies of almost 100% for SO2 and above 78.0% for NOx were achieved. NH4+ in the steel slag slurry could tolerate high NO2- concentrations (up to 3.00 mol/L), and the co-existence of NH4+ and S2O32- had a significant synergistic effect on NOx removal. Together with S2O32-, Mg2+ that leached from the steel slag also had a synergistic effect on NO2 removal. We established the reaction mechanisms for NOx removal using (NH4)(2)S2O3/steel slag slurry. In this process, S2O32- acted as a reducing agent and an oxidation inhibitor of SO32-, thereby enhancing NO2 removal. Moreover, NH4+ inhibited the denitration product (NO2-) from decomposing into NO and NO2, thereby accelerating NOx removal

    Recovery of tungsten and titanium from spent SCR catalyst by sulfuric acid leaching process

    No full text
    The widespread use of selective catalytic reduction (SCR) catalysts has resulted in a large accumulation of spent SCR catalysts. These spent catalysts present a significant risk of environmental hazards and potential for resource recovery. This paper presents a feasible process, which works using atmospheric pressure leaching, of tungsten and titanium recovery from spent SCR catalysts. In this new method, titanium and tungsten are simultaneously leached with sulfuric acid as the leaching agent. After hydrolysis and calcination, titanium-tungsten powder with low impurity and reconstructed pore properties was obtained. The optimal conditions for the leaching of Ti and W were as follows: temperature, 150 degrees C; reaction time, 60 min; H2SO4 concentration, 80 %; mass ratio of H2SO4/TiO2, 3:1; and diluted H2SO4 concentration, 20 % after reaction. With these optimum conditions, the leaching efficiency of Ti and W were found to be 95.92 % and 93.83 %, respectively. The ion speciation and reaction mechanism of W were studied by Raman spectroscopy, FTIR, and UV-vis. The formation of heteropolytungstate with a Keggin structure is essential for the synergistic leaching of Ti and W, as the heteropolytungstate can be stably dissolved in the acid solution. During the hydrolysis process, heteropolytungstate gradually decomposed into Ti4+ and WO42- due to the formation of insoluble Ti(OH)(4) from Ti4+ in the solution. This study demonstrated an effective method for synergistic recovery of titanium and tungsten from the spent SCR catalyst

    The complete chloroplast genome of Laportea bulbifera (Sieb. et Zucc.) Wedd. and its phylogenetic analysis

    No full text
    The circle complete chloroplast genome of Laportea bulbifera (Sieb. et Zucc.) Wedd. was sequenced for the first time. The genome length of L. bulbifera is 150,042 bp with 36.80% of GC content. The genome consists of a large single copy (LSC) region of 82,414 bp, a small single copy (SSC) region of 17,714 bp, and two inverted repeat (IRa and IRb) regions of 24,957 bp each. A total of 129 genes were annotated, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis was conducted by 29 species from the Rosales, the results presented a closed relationship between the species Laportea bulbifera and Poikilospermum lanceolatum

    Optimization of Pressurized Tree-Type Water Distribution Network Using the Improved Decomposition–Dynamic Programming Aggregation Algorithm

    No full text
    Pressurized tree-type water distribution network (WDN) is widely used in rural water supply projects. Optimization of this network has direct practical significance to reduce the capital cost. This paper developed a discrete nonlinear model to obtain the minimum equivalent annual cost (EAC) of pressurized tree-type WDN. The pump head and pipe diameter were taken into account as the double decision variables, while the pipe head loss and flow velocity were the constraint conditions. The model was solved by using the improved decomposition&ndash;dynamic programming aggregation (DDPA) algorithm and applied to a real case. The optimization results showed that the annual investment, depreciation and maintenance cost (W1) were reduced by 22.5%; however, the pumps&rsquo; operational cost (p) increased by 17.9% compared to the actual layout. Overall, the optimal EAC was reduced by 15.2% with the optimized pump head and optimal diameter distribution of the network. This method demonstrated an intrinsic trade-off between investment and operational cost, and provided an efficient decision support tool for least-cost design of pressurized tree-type WDN
    corecore