2,158 research outputs found

    Use of H2Ri Wicking Fabric to Prevent Frost Boils in the Dalton Highway Beaver Slide Area, Alaska

    Get PDF
    INE/AUTC 12.2

    Liquid interfaces in viscous straining flows: Numerical studies of the selective withdrawal transition

    Full text link
    This paper presents a numerical analysis of the transition from selective withdrawal to viscous entrainment. In our model problem, an interface between two immiscible layers of equal viscosity is deformed by an axisymmetric withdrawal flow, which is driven by a point sink located some distance above the interface in the upper layer. We find that steady-state hump solutions, corresponding to selective withdrawal of liquid from the upper layer, cease to exist above a threshold withdrawal flux, and that this transition corresponds to a saddle-node bifurcation for the hump solutions. Numerical results on the shape evolution of the steady-state interface are compared against previous experimental measurements. We find good agreement where the data overlap. However, the numerical results' larger dynamic range allows us to show that the large increase in the curvature of the hump tip near transition is not consistent with an approach towards a power-law cusp shape, an interpretation previously suggested from inspection of the experimental measurements alone. Instead the large increase in the curvature at the hump tip reflects a logarithmic coupling between the overall height of the hump and the curvature at the tip of the hump.Comment: submitted to JF

    Viscous Withdrawal of Miscible Liquid Layers

    Full text link
    In viscous withdrawal, a converging flow imposed in an upper layer of viscous liquid entrains liquid from a lower, stably stratified layer. Using the idea that a thin tendril is entrained by a local straining flow, we propose a scaling law for the volume flux of liquid entrained from miscible liquid layers. A long-wavelength model including only local information about the withdrawal flow is degenerate, with multiple tendril solutions for one withdrawal condition. Including information about the global geometry of the withdrawal flow removes the degeneracy while introducing only a logarithmic dependence on the global flow parameters into the scaling law.Comment: 4 pages, 4 figure

    Breakup of Air Bubbles in Water: Memory and Breakdown of Cylindrical Symmetry

    Get PDF
    Using high-speed video, we have studied air bubbles detaching from an underwater nozzle. As a bubble distorts, it forms a thin neck which develops a singular shape as it pinches off. As in other singularities, the minimum neck radius scales with the time until breakup. However, because the air-water interfacial tension does not drive breakup, even small initial cylindrical asymmetries are preserved throughout the collapse. This novel, non-universal singularity retains a memory of the nozzle shape, size and tilt angle. In the last stages, the air appears to tear instead of pinch.Comment: Submitted to Phys. Rev. Lett. 4 pages, 4 figures. Revised for resubmissio

    Still water: dead zones and collimated ejecta from the impact of granular jets

    Full text link
    When a dense granular jet hits a target, it forms a large dead zone and ejects a highly collimated conical sheet with a well-defined opening angle. Using experiments, simulations, and continuum modeling, we find that this opening angle is insensitive to the precise target shape and the dissipation mechanisms in the flow. We show that this surprising insensitivity arises because dense granular jet impact, though highly dissipative, is nonetheless controlled by the limit of perfect fluid flow.Comment: 5 pages, 5 figures, submitted to Physical Review Letter

    Dense Suspension Splat: Monolayer Spreading and Hole Formation After Impact

    Get PDF
    We use experiments and minimal numerical models to investigate the rapidly expanding monolayer formed by the impact of a dense suspension drop against a smooth solid surface. The expansion creates a lace-like pattern of particle clusters separated by particle-free regions. Both the expansion and the development of the spatial inhomogeneity are dominated by particle inertia, therefore robust and insensitive to details of the surface wetting, capillarity and viscous drag.Comment: 4 pages (5 with references), and a total of 4 figure
    corecore