43 research outputs found

    High Magnetic Field Microwave Conductivity of 2D Electrons in an Array of Antidots

    Full text link
    We measure the high magnetic field (BB) microwave conductivity, Reσxx\sigma_{xx}, of a high mobility 2D electron system containing an antidot array. Reσxx\sigma_{xx} vs frequency (ff) increases strongly in the regime of the fractional quantum Hall effect series, with Landau filling 1/3<ν<2/31/3<\nu<2/3. At microwave ff, Reσxx\sigma_{xx} vs BB exhibits a broad peak centered around ν=1/2\nu=1/2. On the peak, the 10 GHz Reσxx\sigma_{xx} can exceed its dc-limit value by a factor of 5. This enhanced microwave conductivity is unobservable for temperature T≳0.5T \gtrsim 0.5 K, and grows more pronounced as TT is decreased. The effect may be due to excitations supported by the antidot edges, but different from the well-known edge magnetoplasmons.Comment: 4 pages, 3 figures, revtex
    corecore