1,897 research outputs found

    ENERGY TRANSFER IN TRIMERIC C-PHYCOCYANIN STUDIED BY PICOSECOND FLUORESCENCE KINETICS

    Get PDF
    The excited state kinetics of trimeric C-phycocyanin from Mastigocladus laminosus has been measured as a function of the emission and excitation wavelength by the single-photon timing technique with picosecond resolution and simultaneous data analysis. A fast decay component of 22 ps (C-phycocyanin with linker peptides) and 36 ps (C-phycocyanin lacking linker peptides) is attributed to efficient energy transfer from sensitizing to fluorescing chromophores. At long detection wavelengths the fast decay components are found to turn into a rise term. This finding further corroborates the concept of intramolecular energy transfer. Previous reports on the conformational heterogeneity of the chromophores and/or proteins in C-phycocyanin are confirmed. Our data also provide indications for the importance of the uncoloured linker peptides for this heterogeneity

    Energy levels and far-infrared spectroscopy for two electrons in a semiconductor nanoring

    Full text link
    The effects of electron-electron interaction of a two-electron nanoring on the energy levels and far-infrared (FIR) spectroscopy have been investigated based on a model calculation which is performed within the exactly numerical diagonalization. It is found that the interaction changes the energy spectra dramatically, and also shows significant influence on the FIR spectroscopy. The crossings between the lowest spin-singlet and triplet states induced by the coulomb interaction are clearly revealed. Our results are related to the experiment recently carried out by A. Lorke et al. [Phys. Rev. Lett. 84, 2223 (2000)].Comment: 17 pages, 6 figures, revised and accepted by Phys. Rev. B (Dec. 15

    Order-disorder transition in nanoscopic semiconductor quantum rings

    Get PDF
    Using the path integral Monte Carlo technique we show that semiconductor quantum rings with up to six electrons exhibit a temperature, ring diameter, and particle number dependent transition between spin ordered and disordered Wigner crystals. Due to the small number of particles the transition extends over a broad temperature range and is clearly identifiable from the electron pair correlation functions.Comment: 4 pages, 5 figures, For recent information on physics of small systems see http://www.smallsystems.d

    Optical Response of Grating-Coupler-Induced Intersubband Resonances: The Role of Wood's Anomalies

    Full text link
    Grating-coupler-induced collective intersubband transitions in a quasi-two-dimensional electron system are investigated both experimentally and theoretically. Far-infrared transmission experiments are performed on samples containing a quasi-two-dimensional electron gas quantum-confined in a parabolic quantum well. For rectangular shaped grating couplers of different periods we observe a strong dependence of the transmission line shape and peak height on the period of the grating, i.e. on the wave vector transfer from the diffracted beams to the collective intersubband resonance. It is shown that the line shape transforms with increasing grating period from a Lorentzian into a strongly asymmetric line shape. Theoretically, we treat the problem by using the transfer-matrix method of local optics and apply the modal-expansion method to calculate the influence of the grating. The optically uniaxial quasi-two-dimensional electron gas is described in the long-wavelength limit of the random-phase approximation by a local dielectric tensor, which includes size quantization effects. Our theory reproduces excellently the experimental line shapes. The deformation of the transmission line shapes we explain by the occurrence of both types of Wood's anomalies.Comment: 28 pages, 7 figures. Physical Review B , in pres

    Localized magnetoplasmon modes arising from broken translational symmetry in semiconductor superlattices

    Full text link
    The electromagnetic propagator associated with the localized collective magnetoplasmon excitations in a semiconductor superlattice with broken translational symmetry, is calculated analytically within linear response theory. We discuss the properties of these collective excitations in both radiative and non-radiative regimes of the electromagnetic spectra. We find that low frequency retarded modes arise when the surface density of carriers at the symmetry breaking layer is lower than the density at the remaining layers. Otherwise a doublet of localized, high-frequency magnetoplasmon-like modes occurs.Comment: Revtex file + separate pdf figure

    Clinical research: Should patients pay to play?

    Get PDF
    We argue that charging people to participate in research is likely to undermine the fundamental ethical bases of clinical research, especially the principles of social value, scientific validity, and fair subject selection

    Cross spectral analysis of Swabian Jura (SW Germany) three-component microearthquake recordings

    Get PDF
    Similar three-component microearthquake records have been observed in the Swabian Jura (SW Germany) seismic zone for different source-receiver geometries. This data set is used to study the resolution power of cross spectral analysis techniques for the estimation of relative differential times as well as the applicability to velocity monitoring. The differential times are estimated in the frequency domain by assuming a linear-phase cross spectrum with the slope indicating the individual time difference. All earthquakes have been relocated with respect to a master event, using the relative P and S delay times from the cross spectral analysis as a measure of source mislocation. The overall location error is strongly dependent on the inital distance between master and studied event. For earthquakes initially located farther apart than approximately 1.5 km, the relocalization result in terms of total location error was poorer, whereas for events initially located closer than 1 km the precision of the relocalization was improved. The remaining residuals are of the order of 10 ms, which is approximately 3 times the digitization interval. In order to test the applicability of cross spectral analysis to velocity monitoring, synthetic data were used to model the influences of noise and source time function differences. The effect of additive white noise seems to be acceptable in cases where the S/N ratio is sufficiently high. Small changes in the shape of the source time function, however, were found to be of great influence to the differential time estimates. Variation of rise, sustain and decay times, which were negligible in the coherence spectrum, spuriously introduced phase differences which, in terms of delay times, easily reach the magnitude of the digitization interval. Thus, velocity monitoring using cross spectral analysis techniques seems to depend strongly on the equality - in contrast to similarity - of the source time functions of the events which are compared. The coherence spectrum is not a sufficient measure to detect all the significant differences.           ARK: https://n2t.net/ark:/88439/y035103 Permalink: https://geophysicsjournal.com/article/213 &nbsp

    Jahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001)

    Get PDF
    Using ab initio thermodynamics we compile a phase diagram for the surface of Fe3O4(001) as a function of temperature and oxygen pressures. A hitherto ignored polar termination with octahedral iron and oxygen forming a wave-like structure along the [110]-direction is identified as the lowest energy configuration over a broad range of oxygen gas-phase conditions. This novel geometry is confirmed in a x-ray diffraction analysis. The stabilization of the Fe3O4(001)-surface goes together with dramatic changes in the electronic and magnetic properties, e.g., a halfmetal-to-metal transition.Comment: 4 pages, 4 figure
    • …
    corecore