18 research outputs found

    Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome

    Get PDF
    BACKGROUND: Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure. METHODS: In a nested case-control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data. RESULTS: Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and \u3c 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively). CONCLUSIONS: This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course

    Assessing hypoxic damage to placental trophoblasts by measuring membrane viscosity of extracellular vesicles

    No full text
    Introduction: As highly sophisticated intercellular communication vehicles in biological systems, extracellular vesicles (EVs) have been investigated as both promising liquid biopsy-based disease biomarkers and drug delivery carriers. Despite tremendous progress in understanding their biological and physiological functions, mechanical characterization of these nanoscale entities remains challenging due to the limited availability of proper techniques. Especially, whether damage to parental cells can be reflected by the mechanical properties of their EVs remains unknown. Methods: In this study, we characterized membrane viscosities of different types of EVs collected from primary human trophoblasts (PHTs), including apoptotic bodies, microvesicles and small extracellular vesicles, using fluorescence lifetime imaging microscopy (FLIM). The biochemical origin of EV membrane viscosity was examined by analyzing their phospholipid composition, using mass spectrometry. Results: We found that different EV types derived from the same cell type exhibit different membrane viscosities. The measured membrane viscosity values are well supported by the lipidomic analysis of the phospholipid compositions. We further demonstrate that the membrane viscosity of microvesicles can faithfully reveal hypoxic injury of the human trophoblasts. More specifically, the membrane of PHT microvesicles released under hypoxic condition is less viscous than its counterpart under standard culture condition, which is supported by the reduction in the phosphatidylethanolamine-to-phosphatidylcholine ratio in PHT microvesicles. Discussion: Our study suggests that biophysical properties of released trophoblastic microvesicles can reflect cell health. Characterizing EV’s membrane viscosity may pave the way for the development of new EV-based clinical applications.Ministry of Education (MOE)Nanyang Technological UniversitySubmitted/Accepted versionThis work was supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development [R01HD086325, R37HD086916]; Nanyang Technological University [M4082352, M4082428]; the Ministry of Education, Singapore, under its Academic Research Fund Tier 1 [RG92/19]; National Institute of Health [S10OD023402]

    Sulforaphane Diminishes the Formation of Mammary Tumors in Rats Exposed to 17β-Estradiol

    No full text
    Elevated levels of estrogen are a risk factor for breast cancer. In addition to inducing DNA damage, estrogens can enhance cell proliferation as well as modulate fatty acid metabolism that collectively contributes to mammary tumorigenesis. Sulforaphane (SFN) is an isothiocyanate derived from broccoli that is currently under evaluation in multiple clinical trials for prevention of several diseases, including cancer. Previous studies showed that SFN suppressed DNA damage and lipogenesis pathways. Therefore, we hypothesized that administering SFN to animals that are co-exposed to 17β-estradiol (E2) would prevent mammary tumor formation. In our study, 4–6 week old female August Copenhagen Irish rats were implanted with slow-release E2 pellets (3 mg x 3 times) and gavaged 3x/week with either vehicle or 100 μmol/kg SFN for 56 weeks. SFN-treated rats were protected significantly against mammary tumor formation compared to vehicle controls. Mammary glands of SFN-treated rats showed decreased DNA damage while serum free fatty acids and triglyceride species were 1.5 to 2-fold lower in SFN-treated rats. Further characterization also showed that SFN diminished expression of enzymes involved in mammary gland lipogenesis. This study indicated that SFN protects against breast cancer development through multiple potential mechanisms in a clinically relevant hormonal carcinogenesis model

    Metabolites Associated with Vigor to Frailty Among Community-Dwelling Older Black Men

    No full text
    Black versus white older Americans are more likely to experience frailty, a condition associated with adverse health outcomes. To reduce racial disparities in health, a complete understanding of the pathophysiology of frailty is needed. Metabolomics may further our understanding by characterizing differences in the body during a vigorous versus frail state. We sought to identify metabolites and biological pathways associated with vigor to frailty among 287 black men ages 70–81 from the Health, Aging, and Body Composition study. Using liquid chromatography-mass spectrometry, 350 metabolites were measured in overnight-fasting plasma. The Scale of Aging Vigor in Epidemiology (SAVE) measured vigor to frailty based on weight change, strength, energy, gait speed, and physical activity. Thirty-seven metabolites correlated with SAVE scores (p < 0.05), while adjusting for age and site. Fourteen metabolites remained significant after multiple comparisons adjustment (false discovery rate < 0.30). Lower values of tryptophan, methionine, tyrosine, asparagine, C14:0 sphingomyelin, and 1-methylnicotinamide, and higher values of glucoronate, N-carbamoyl-beta-alanine, isocitrate, creatinine, C4-OH carnitine, cystathionine, hydroxyphenylacetate, and putrescine were associated with frailer SAVE scores. Pathway analyses identified nitrogen metabolism, aminoacyl-tRNA biosynthesis, and the citric acid cycle. Future studies need to confirm these SAVE-associated metabolites and pathways that may indicate novel mechanisms involved in the frailty syndrome.Medicine, Faculty ofNon UBCPopulation and Public Health (SPPH), School ofReviewedFacult

    Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses.

    No full text
    The metabolite acetyl-coenzyme A (acetyl-CoA) serves as an essential element for a wide range of cellular functions including adenosine triphosphate (ATP) production, lipid synthesis, and protein acetylation. Intracellular acetyl-CoA concentrations are associated with nutrient availability, but the mechanisms by which a cell responds to fluctuations in acetyl-CoA levels remain elusive. Here, we generate a cell system to selectively manipulate the nucleo-cytoplasmic levels of acetyl-CoA using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing and acetate supplementation of the culture media. Using this system and quantitative omics analyses, we demonstrate that acetyl-CoA depletion alters the integrity of the nucleolus, impairing ribosomal RNA synthesis and evoking the ribosomal protein-dependent activation of p53. This nucleolar remodeling appears to be mediated through the class IIa histone deacetylases (HDACs). Our findings highlight acetylation-mediated control of the nucleolus as an important hub linking acetyl-CoA fluctuations to cellular stress responses

    CMPF, a Metabolite Formed Upon Prescription Omega-3-Acid Ethyl Ester Supplementation, Prevents and Reverses Steatosis

    No full text
    Prescription ω-3 fatty acid ethyl ester supplements are commonly used for the treatment of hypertriglyceridemia. However, the metabolic profile and effect of the metabolites formed by these treatments remain unknown. Here we utilized unbiased metabolomics to identify 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) as a significant metabolite of the ω-3-acid ethyl ester prescription Lovaza™ in humans. Administration of CMPF to mice before or after high-fat diet feeding at exposures equivalent to those observed in humans increased whole-body lipid metabolism, improved insulin sensitivity, increased beta-oxidation, reduced lipogenic gene expression, and ameliorated steatosis. Mechanistically, we find that CMPF acutely inhibits ACC activity, and induces long-term loss of SREBP1c and ACC1/2 expression. This corresponds to an induction of FGF21, which is required for long-term steatosis protection, as FGF21KO mice are refractory to the improved metabolic effects. Thus, CMPF treatment in mice parallels the effects of human Lovaza™ supplementation, revealing that CMPF may contribute to the improved metabolic effects observed with ω-3 fatty acid prescriptions

    Metabolic support of regulatory T cells by lactic acid

    Get PDF
    Regulatory T (Treg) cells, although vital for immune homeostasis, also represent a major barrier to anti-cancer immunity, as the tumor microenvironment (TME) promotes the recruitment, differentiation, and activity of these cells1,2. Tumor cells show deregulated metabolism, leading to a metabolite-depleted, hypoxic and acidic TME3, which places infiltrating effector T cells in competition with the tumor for metabolites and impairs their function4–6. At the same time, Treg cells maintain a strong suppression of effector T cells within the TME7,8. As previous studies suggested that Treg cells possess a distinct metabolic profile from effector T cells9–11, we hypothesized that the altered metabolic landscape of the TME and increased activity of intratumoral Treg cells are linked. Here we show that Treg cells display broad heterogeneity in their metabolism of glucose within normal and transformed tissues and can engage an alternative metabolic pathway to maintain suppressive function and proliferation. Glucose uptake correlates with poorer suppressive function and long-term instability, and high-glucose conditions impair the function and stability of Treg cells in vitro. Treg cells instead upregulate pathways involved in the metabolism of the glycolytic by-product lactic acid. Treg cells withstand high-lactate conditions, and treatment with lactate prevents the destabilizing effects of high-glucose conditions, generating intermediates necessary for proliferation. Lactic acid also contributes directly to epigenetic modifications through histone lactylation which may support the expression of Treg cell signature genes. Deletion of MCT1—a lactate transporter—in Treg cells reveals that lactate uptake is dispensable for the function of peripheral Treg cells but required intratumorally, resulting in slowed tumor growth and an increased response to immunotherapy. Thus, Treg cells are metabolically flexible: they can use ‘alternative’ metabolites in the TME to maintain their suppressive identity. Further, our results suggest that tumors avoid destruction by not only depriving effector T cells of nutrients, but also metabolically supporting regulatory populations
    corecore