66 research outputs found

    Exposure to graphene in a pilot production plant

    Get PDF
    Workers exposure to graphene was measured in a pilot production plant. Reduced graphene oxide was produced through graphite oxidation and posterior thermal reduction. The monitoring was performed using two handheld on-line devices covering the particle size range from 10 nm to 10 μm (CPC3007 and OPS3330). Simultaneously, personal and area filter samples were collected for off line analysis, including gravimetric, elemental carbon analysis and SEM/EDX. Significant releases of particles were identified in two tasks, during the graphene oxide washing, and during its milling. However, the analysis of the particles size distribution and of their morphology suggested that the released particles were not the target nanomaterial but engine generated nanoparticles. The mass of elemental carbon in the collected filters was below the quantification limit and the calculated graphene mass concentrations were quite below the selected reference exposure limit. Overall, this work showed that worker exposure to graphene was low in this pilot plant, contributing to guarantee a safe process, prior to its industrialization.This research was carried out as part of the project FAST- Functionally Graded Additive Manufacturing Scaffolds by Hybrid Manufacturing. The project FAST has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 685825

    Prophylactic ciprofloxacin treatment prevented high mortality, and modified systemic and intestinal immune function in tumour-bearing rats receiving dose-intensive CPT-11 chemotherapy

    Get PDF
    Infectious complications are a major cause of morbidity and mortality from dose-intensive cancer chemotherapy. In spite of the importance of intestinal bacteria translocation in these infections, information about the effect of high-dose chemotherapy on gut mucosal immunity is minimal. We studied prophylactic ciprofloxacin (Cipro) treatment on irinotecan (CPT-11) toxicity and host immunity in rats bearing Ward colon tumour. Cipro abolished chemotherapy-related mortality, which was 45% in animals that were not treated with Cipro. Although Cipro reduced body weight loss and muscle wasting, it was unable to prevent severe late-onset diarrhoea. Seven days after CPT-11, splenocytes were unable to proliferate (stimulation index=0.10±0.02) and produce proliferative and inflammatory cytokines (i.e., Interleukin (IL)-2, interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α) IL-1β, IL-6) on mitogen stimulation in vitro (P<0.05 vs controls), whereas mesenteric lymph node (MLN) cells showed a hyper-proliferative response and a hyper-production of pro-inflammatory cytokines on mitogen stimulation. This suggests compartmentalised effects by CPT-11 chemotherapy on systemic and intestinal immunity. Cipro normalised the hyper-responsiveness of MLN cells, and in the spleen, it partially restored the proliferative response and normalised depressed production of IL-1β and IL-6. Taken together, Cipro prevented infectious challenges associated with immune hypo-responsiveness in systemic immune compartments, and it may also alleviate excessive pro-inflammatory responses mediating local gut injury

    Diet in irritable bowel syndrome

    Get PDF

    Additive Manufactured Scaffolds for Bone Tissue Engineering: Physical Characterization of Thermoplastic Composites with Functional Fillers

    Get PDF
    Thermoplastic polymer-filler composites are excellent materials for bone tissue engineering (TE) scaffolds, combining the functionality of fillers with suitable load-bearing ability, biodegradability, and additive manufacturing (AM) compatibility of the polymer. Two key determinants of their utility are their rheological behavior in the molten state, determining AM processability and their mechanical load-bearing properties. We report here the characterization of both these physical properties for four bone TE relevant composite formulations with poly(ethylene oxide terephthalate)/poly(butylene terephthalate (PEOT/PBT) as a base polymer, which is often used to fabricate TE scaffolds. The fillers used were reduced graphene oxide (rGO), hydroxyapatite (HA), gentamicin intercalated in zirconium phosphate (ZrP-GTM) and ciprofloxacin intercalated in MgAl layered double hydroxide (MgAl-CFX). The rheological assessment showed that generally the viscous behavior dominated the elastic behavior (G″ > G′) for the studied composites, at empirically determined extrusion temperatures. Coupled rheological-thermal characterization of ZrP-GTM and HA composites showed that the fillers increased the solidification temperatures of the polymer melts during cooling. Both these findings have implications for the required extrusion temperatures and bonding between layers. Mechanical tests showed that the fillers generally not only made the polymer stiffer but more brittle in proportion to the filler fractions. Furthermore, the elastic moduli of scaffolds did not directly correlate with the corresponding bulk material properties, implying composite-specific AM processing effects on the mechanical properties. Finally, we show computational models to predict multimaterial scaffold elastic moduli using measured single material scaffold and bulk moduli. The reported characterizations are essential for assessing the AM processability and ultimately the suitability of the manufactured scaffolds for the envisioned bone regeneration application
    • …
    corecore