3 research outputs found

    A Review of Homomorphic Encryption for Privacy-Preserving Biometrics

    No full text
    The advancement of biometric technology has facilitated wide applications of biometrics in law enforcement, border control, healthcare and financial identification and verification. Given the peculiarity of biometric features (e.g., unchangeability, permanence and uniqueness), the security of biometric data is a key area of research. Security and privacy are vital to enacting integrity, reliability and availability in biometric-related applications. Homomorphic encryption (HE) is concerned with data manipulation in the cryptographic domain, thus addressing the security and privacy issues faced by biometrics. This survey provides a comprehensive review of state-of-the-art HE research in the context of biometrics. Detailed analyses and discussions are conducted on various HE approaches to biometric security according to the categories of different biometric traits. Moreover, this review presents the perspective of integrating HE with other emerging technologies (e.g., machine/deep learning and blockchain) for biometric security. Finally, based on the latest development of HE in biometrics, challenges and future research directions are put forward

    Additional file 3: Figure S3. of Threonine175, a novel pathological phosphorylation site on tau protein linked to multiple tauopathies

    No full text
    Representative pThr217 tau pathology in each neurodegenerative disease. A) AD anterior cingulate cortex, B) ALS entorhinal cortex, C) ALSci hippocampus, D) ALSci superior frontal cortex astrocytic plaque, E) CBD entorhinal cortex, F) DLBD hippocampus, G) mDLBD amygdala, H) FTLD amygdala, I) MSA amygdala, J) PD entorhinal cortex, K) Pick’s entorhinal cortex, L) VD entorhinal cortex. Nuclear fast red or hematoxylin counterstain used. Original images taken at 100×. (TIF 30702 kb

    Additional file 2: Figure S2. of Threonine175, a novel pathological phosphorylation site on tau protein linked to multiple tauopathies

    No full text
    Representative pSer208,210 tau pathology in each neurodegenerative disease. A) AD substantia nigra, B) ALS amygdala, C) ALSci entorhinal cortax, D) ALSci ACC neuritic plaque, E) CBD entorhinal cortex, F) DLBD entorhinal cortex, G) mDLBD amygdala, H) FTLD superior frontal cortex, I) MSA amygdala, J) PD entorhinal cortex, K) Pick’s entorhinal cortex, L) VD superior frontal cortex. Nuclear fast red or hematoxylin counterstain used. Original images taken at 100×. (TIF 30111 kb
    corecore