15 research outputs found

    Alkali burn induced corneal spontaneous pain and activated neuropathic pain matrix in the central nerve system in mice

    Get PDF
    Purpose: To explore whether alkali burn causes corneal neuropathic pain and activates neuropathic pain matrix in the central nerve system in mice. Methods: A corneal alkali burn mouse model (grade II) was used. Mechanical threshold in the cauterized area was tested using Von Frey hairs. Spontaneous pain behavior was investigated with conditioned place preference (CPP). Phosphor extracellular signal-regulated kinase (ERK), which is a marker for neuronal activation in chronic pain processing, was investigated in several representative areas of the neuropathic pain matrix: the two regions of the spinal trigeminal nucleus (subnucleus interpolaris/caudalis ,Vi/Vc; subnucleus caudalis/upper cervical cord , Vc/C1), insular cortex, anterior cingulated cortex (ACC), and the rostroventral medulla (RVM). Further, pharmacologically blocking pERK activation in ACC of alkali burn mice was performed in a separate study. Results: Corneal alkali burn caused long lasting damage to the corneal subbasal nerve fibers and mice exhibited spontaneous pain behavior. By testing in several representative areas of neuropathic pain matrix in the higher nerve system, phosphor extracellular signal-regulated kinase (ERK) was significantly activated in Vc/C1, but not in Vi/Vc. Also, ERK was activated in the insular cortex, ACC, and RVM. Furthermore, pharmacologically blocking ERK activation in ACC abolished alkali burn induced corneal spontaneous pain. Conclusion: Alkali burn could cause corneal spontaneous pain and activate neuropathic pain matrix in the central nerve system. Furthermore, activation of ERK in ACC is required for alkali burn induced corneal spontaneous pain

    Small noncoding RNAs play superior roles in maintaining hematopoietic stem cell homeostasis

    No full text
    The maintenance of the mammalian blood system depends on hematopoietic stem cells (HSCs), which are a rare class of adult stem cells with self-renewal and multilineage differentiation capacities. The homeostasis of hematopoietic stem cells is finely tuned by a variety of endogenous and exogenous regulatory factors, and disrupted balance will lead to hematological diseases including leukemia and anemia. Recently, emerging studies have illustrated the cellular and molecular mechanisms underlying the regulation of HSC homeostasis. Particularly, the rapid development of second-generation sequencing technologies has uncovered that many small noncoding RNAs (ncRNAs) are highly expressed in HSCs, including snoRNAs, miRNAs, tsRNAs, circular RNAs, etc. In this study, we will summarize the essential roles and regulatory mechanisms of these small ncRNAs in maintaining HSC homeostasis. Overall, this review provides up-to-date information in the regulation of HSC homeostasis by small ncRNAs, which sheds light into the development of therapeutic strategies against hematopoietic malignancies

    Multi-Objective Optimization of Curing Profile for Autoclave Processed Composites: Simultaneous Control of Curing Time and Process-Induced Defects

    No full text
    The contribution of this work is introducing a multi-objective optimization method based on finite element (FE) numerical simulation to simultaneously control the curing time and cure-induced defects of C-shaped composites during a curing cycle. Thermochemical and thermomechanical coupled analysis is performed and validated experimentally to understand the evolution details of temperature, degree of cure and curing deformation. Aiming to achieve the simultaneous control of manufacturing cost and composite quality, the curing profile is optimized by employing the critical factors including the total curing time, the maximum degree of cure difference, and the curing deformation. The optimization result shows that the designed curing profile can effectively reduce the curing time and guarantee the curing quality. The total curing time of the optimization is reduced by 19%. The verification experiment is also conducted to prove the accuracy and effectiveness of the proposed optimization method

    NLRP9B protein is dispensable for oocyte maturation and early embryonic development in the mouse

    No full text

    Adlay (薏苡 yì yĭ; “soft-shelled job's tears”; the seeds of Coix lachryma-jobi L. var. ma-yuen Stapf) is a Potential Cancer Chemopreventive Agent toward Multistage Carcinogenesis Processes

    No full text
    Adlay (薏苡 yì yĭ; “soft-shelled job’s tears”, the seeds of Coix lachryma-jobi L. var. ma-yuen Stapf) is a grass crop that has long been used in traditional Chinese medicine (TCM) and as a nourishing food in China for the treatment of warts, chapped skin, rheumatism, neuralgia, inflammatory, and neoplastic diseases. In addition, adlay also has been said to have stomachic, diuretic, antipholgistic, anodynic, and antispasmodic effects. Carcinogenesis is a multistage process that begins with exposure of viruses or chemicals that are found in the environment. Chemoprevention refers to the use of natural or synthetic, non-toxic chemical substances to reverse, repress, or prevent carcinogenesis. In this review, we summarize recent research attempting to study the chemopreventive blocking and suppressing potential of adlay and its active components in scavenging electrophiles and reactive oxygen species, antimutagenicity, enhancing Nrf2-mediated detoxification and antioxidant effect, altering carcinogen metabolism, suppressing proliferation, decreasing inflammation, and enhancing antitumor immunity. In addition, several active components with diverse chemopreventive properties have been also mentioned in this review article

    Expression and localization of Nlrp4g

    No full text

    Adlay Seed (Coix lacryma-jobi L. var. Ma-yuen Stapf.) Ethanolic Extract Fractions and Subfractions Induce Cell Cycle Arrest and Apoptosis in Human Breast and Cervical Cancer Cell Lines

    No full text
    The antitumor effects of Coix lacryma-jobi L. var. ma-yuen Stapf. (adlay seed) ethanolic extract have been increasingly shown. This study aimed to investigate the beneficial effects of both the fractions and subfractions of adlay seed ethanolic extract on the human breast (MCF-7) and cervical (HeLa) cancer cell lines, as well as exploring their possible mechanisms of action. The ethanolic extracts were obtained from different parts of adlay seed, including AHE (adlay hull extract), ATE (adlay testa extract), ABE (adlay bran extract) and PAE (polished adlay extract). The results of a 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl- tetrazolium bromide (MTT) assay showed that AHE-Ea and ATE-Ea showed significant growth inhibitory effects in a dose-dependent manner. The results also showed that the AHE-Ea-K, AHE-Ea-L, ATE-Ea-E and ATE-Ea-F subfractions inhibited cell proliferation, induced cell cycle arrest in the G0/G1 phase and decreased CDK4/Cyclin D1 protein expression. Finally, the extract activated caspase-3 activity and PARP protein expression, which induced MCF-7 and HeLa cell apoptosis. We then used liquid chromatography–mass spectrometry (LC/MS) to identify the potential active components., Quercetin showed an anticancer capacity. In conclusion, the AHE-Ea-K, AHE-Ea-L, ATE-Ea-E and ATE-Ea-F subfractions showed antitumor effects through the inhibition of MCF-7 and HeLa cell line viability, as well as inducing apoptosis and cell cycle arrest
    corecore