38 research outputs found

    PrP-C and PrP-Sc at the Fetal-Maternal Interface

    Get PDF
    Scrapie is a naturally occurring prion (PrP) disease causing a fatal neurodegenerative disorder in sheep and goats. Previous studies suggest that scrapie is transmitted naturally through exposure to the scrapie agent in wasted placentas of infected ewes. This study determined the distribution and biochemical properties of PrP cellular (PrP-C) and the distribution of PrP scrapie (PrP-Sc) in reproductive, placental, and selected fetal tissues and fetal fluids in sheep. Glycosylated, N-terminally truncated, proteinase K-sensitive PrP-C with apparent molecular masses of 23–37 kDa was present in reproductive, placental, and fetal tissues and fetal fluids. PrP-C was low or undetectable in intercotyledonary chorioallantois, amnion, urachus, amniotic fluid, and fetal urine. In pregnant ewes, cotyledonary chorioallantois, allantoic fluid, and caruncular endometrium contained higher levels of PrP-C than did intercaruncular endometrium, myometrium, oviduct, ovary, fetal bladder, or fetal kidney. Caruncular endometrial PrP-C was up-regulated during pregnancy. Despite the wide distribution of PrP-C in reproductive, placental, and selected fetal tissues and fetal fluid, PrP-Sc was detected only in caruncular endometrium and cotyledonary chorioallantois of pregnant scrapie-infected ewes. The embryo/fetus may not be exposed to scrapie in utero because it is separated physically from PrP-positive allantois and chorioallantois by PrP-negative amnion

    Abomasal mucosal immune responses of cattle with limited or continuous exposure to pasture-borne gastrointestinal nematode parasite infection

    Get PDF
    It has been well documented that cattle raised on pasture are slow in weight gain when compared to those fed with grain. Inflammation in the digestive system commonly caused by pasture-transmitted gastrointestinal (GI) nematode parasites that could negatively impact feed conversion has never been compared in cattle raised with no pasture exposure (NPE, uninfected), limited pasture exposure (LPE, exposure until weaning), or continuous pasture exposure (CPE, life time exposure). In the present study, the abomasal mucosal immune responses and inflammation of LPE and CPE cattle were investigated. Our results indicate that CPE cattle displayed inflamed abomasa with enlarged draining lymph nodes, the presence of Ostertagia ostertagi larvae and higher levels of Ostertagia-specific antibodies in circulation. The level of B cells was elevated in the abomasal mucosa in the presence (nodular) or absence (non-nodular) of Ostertagia-specific pathology, where B cells were 4-fold higher in the nodular mucosa. Foxp3+ CD4T cells were also noticeably elevated in both the abomasal mucosa and blood, but were only slightly higher in non-nodular mucosa than in the nodular mucosa of CPE animals. In contrast, LPE animals presented no enlargement of abomasal draining lymph nodes and exhibited little to no immune cell infiltration in the abomasal mucosa. Further, CPE animals had higher numbers of mucosal mast cells when compared to LPE animals, though mucosal mast cells were high in all animals. Overall, CPE cattle displayed significantly higher levels of inflammation and pathology in their abomasa and may explain in part slowed weight gain relative to LPE animals. The results of this study emphasize the need for GI nematode parasite control in CPE animals and development and application of vaccines which are compatible with the organic cattle production system

    Ostertagia ostertagi macrophage migration inhibitory factor is present in all developmental stages and may cross-regulate host functions through interaction with the host receptor

    Get PDF
    Macrophage migration inhibitory factor (MIF) of Ostertagia ostertagi, an abomasal parasite of cattle, was characterised in the present study. Phylogenetic analysis identified at least three O. ostertagi MIFs (Oos- MIFs), each encoded by a distinct transcript: Oos-MIF-1.1, Oos-MIF-1.2 and Oos-MIF-2. Oos-MIF-2 is only distantly related to Oos-MIF-1s, but has higher sequence similarity with the Caenorhabditis elegans MIF2. Oos-MIF-1.1 and Oos-MIF-1.2 are similar (93%) and thus collectively referred to as Oos-MIF-1 when characterised with immunoassays. Recombinant Oos-MIF-1.1 (rOos-MIF-1.1) is catalytically active as a tautomerase. A mutation (rOos-MIF-1.1P1G) or duplication of Pro1 residue (rOos-MIF-1.1P1+P) resulted in reduced oligomerisation and loss of tautomerase activity. The tautomerase activity of rOos-MIF-1.1 was only partially inhibited by ISO-1 but was abrogated by a rOos-MIF-1.1-specific antibody. Oos-MIF- 1 was detected in all developmental stages of O. ostertagi, with higher levels in the adult stage; it was also detected in adult worm excretory/secretory product. Oos-MIF-1 was localised to the hypodermis/muscle, reproductive tract and intestine, but not to the cuticle. rOos-MIF-1.1, but not rOos-MIF-1.1P1G, was able to specifically bind to human CD74, a MIF cell surface receptor, with an affinity comparable with human MIF. Immunostaining indicated that macrophages were able to internalise rOos-MIF-1.1, further supporting receptor-mediated transportation. Herein we also show that rOos-MIF-1.1 inhibited migration of bovine macrophages and restored glucocorticoid-suppressed, lipopolysaccharide-induced TNF-a and IL-8 in human and/or bovine macrophages. Given its dual role in self-regulation and molecular mimicry, this secreted parasite protein warrants investigation as a vaccine candidate against O. ostertagi infections in cattle

    Serum level of S100A8/A9 as a biomarker for establishing the diagnosis and severity of community-acquired pneumonia in children

    Get PDF
    BackgroundS100A8/A9, which is a member of S100 proteins, may be involved in the pathophysiology of Community-acquired pneumonia (CAP) that seriously threatens children’s health. However, circulating markers to assess the severity of pneumonia in children are yet to be explored. Therefore, we aimed to investigate the diagnostic performance of serum S100A8/A9 level in determining the severity of CAP in children.MethodsIn this prospective and observational study, we recruited 195 in-hospital children diagnosed with CAP. In comparison, 63 healthy children (HC) and 58 children with non-infectious pneumonia (pneumonitis) were included as control groups. Demographic and clinical data were collected. Serum S100A8/A9 levels, serum pro-calcitonin concentrations, and blood leucocyte counts were quantified.ResultsThe serum S100A8/A9 levels in patients with CAP was 1.59 ± 1.32 ng/mL, which was approximately five and two times higher than those in healthy controls and those in children with pneumonitis, respectively. Serum S100A8/A9 was elevated parallelly with the clinical pulmonary infection score. The sensitivity, specificity, and Youden’s index of S100A8/A9 ≥1.25 ng/mL for predicting the severity of CAP in children was optimal. The area under the receiver operating characteristic curve of S100A8/A9 was the highest among the indices used to evaluate severity.ConclusionsS100A8/A9 may serve as a biomarker for predicting the severity of the condition in children with CAP and establishing treatment grading

    Abomasal mucosal immune responses of cattle with limited or continuous exposure to pasture-borne gastrointestinal nematode parasite infection

    Get PDF
    It has been well documented that cattle raised on pasture are slow in weight gain when compared to those fed with grain. Inflammation in the digestive system commonly caused by pasture-transmitted gastrointestinal (GI) nematode parasites that could negatively impact feed conversion has never been compared in cattle raised with no pasture exposure (NPE, uninfected), limited pasture exposure (LPE, exposure until weaning), or continuous pasture exposure (CPE, life time exposure). In the present study, the abomasal mucosal immune responses and inflammation of LPE and CPE cattle were investigated. Our results indicate that CPE cattle displayed inflamed abomasa with enlarged draining lymph nodes, the presence of Ostertagia ostertagi larvae and higher levels of Ostertagia-specific antibodies in circulation. The level of B cells was elevated in the abomasal mucosa in the presence (nodular) or absence (non-nodular) of Ostertagia-specific pathology, where B cells were 4-fold higher in the nodular mucosa. Foxp3+ CD4T cells were also noticeably elevated in both the abomasal mucosa and blood, but were only slightly higher in non-nodular mucosa than in the nodular mucosa of CPE animals. In contrast, LPE animals presented no enlargement of abomasal draining lymph nodes and exhibited little to no immune cell infiltration in the abomasal mucosa. Further, CPE animals had higher numbers of mucosal mast cells when compared to LPE animals, though mucosal mast cells were high in all animals. Overall, CPE cattle displayed significantly higher levels of inflammation and pathology in their abomasa and may explain in part slowed weight gain relative to LPE animals. The results of this study emphasize the need for GI nematode parasite control in CPE animals and development and application of vaccines which are compatible with the organic cattle production system

    Ostertagia ostertagi macrophage migration inhibitory factor is present in all developmental stages and may cross-regulate host functions through interaction with the host receptor

    Get PDF
    Macrophage migration inhibitory factor (MIF) of Ostertagia ostertagi, an abomasal parasite of cattle, was characterised in the present study. Phylogenetic analysis identified at least three O. ostertagi MIFs (Oos- MIFs), each encoded by a distinct transcript: Oos-MIF-1.1, Oos-MIF-1.2 and Oos-MIF-2. Oos-MIF-2 is only distantly related to Oos-MIF-1s, but has higher sequence similarity with the Caenorhabditis elegans MIF2. Oos-MIF-1.1 and Oos-MIF-1.2 are similar (93%) and thus collectively referred to as Oos-MIF-1 when characterised with immunoassays. Recombinant Oos-MIF-1.1 (rOos-MIF-1.1) is catalytically active as a tautomerase. A mutation (rOos-MIF-1.1P1G) or duplication of Pro1 residue (rOos-MIF-1.1P1+P) resulted in reduced oligomerisation and loss of tautomerase activity. The tautomerase activity of rOos-MIF-1.1 was only partially inhibited by ISO-1 but was abrogated by a rOos-MIF-1.1-specific antibody. Oos-MIF- 1 was detected in all developmental stages of O. ostertagi, with higher levels in the adult stage; it was also detected in adult worm excretory/secretory product. Oos-MIF-1 was localised to the hypodermis/muscle, reproductive tract and intestine, but not to the cuticle. rOos-MIF-1.1, but not rOos-MIF-1.1P1G, was able to specifically bind to human CD74, a MIF cell surface receptor, with an affinity comparable with human MIF. Immunostaining indicated that macrophages were able to internalise rOos-MIF-1.1, further supporting receptor-mediated transportation. Herein we also show that rOos-MIF-1.1 inhibited migration of bovine macrophages and restored glucocorticoid-suppressed, lipopolysaccharide-induced TNF-a and IL-8 in human and/or bovine macrophages. Given its dual role in self-regulation and molecular mimicry, this secreted parasite protein warrants investigation as a vaccine candidate against O. ostertagi infections in cattle

    Identification and Characterization of Neospora caninum Cyclophilin That Elicits Gamma Interferon Production

    No full text
    Gamma interferon (IFN-γ) response is essential to the development of a host protective immunity in response to infections by intracellular parasites. Neosporosis, an infection caused by the intracellular protozoan parasite Neospora caninum, is fatal when there is a complete lack of IFN-γ in the infected host. However, the mechanism by which IFN-γ is elicited by the invading parasite is unclear. This study has identified a microbial protein in the N. caninum tachyzoite N. caninum cyclophilin (NcCyP) as a major component of the parasite responsible for the induction of IFN-γ production by bovine peripheral blood mononuclear cells (PBMC) and antigen-specific CD4(+) T cells. NcCyP has high sequence homology (86%) with Toxoplasma gondii 18-kDa CyP with a calculated molecular mass of 19.4 kDa. NcCyP is a secretory protein with a predicted signal peptide of 17 amino acids. Abundant NcCyP was detected in whole-cell N. caninum tachyzoite lysate antigen (NcAg) and N. caninum tachyzoite culture supernatant. In N. caninum tachyzoite culture supernatant, three NcCyP bands of 19, 22, and 24 kDa were identified. NcAg stimulated high levels of IFN-γ production by PBMC and CD4(+) T cells. The IFN-γ-inducing effect of NcAg was blocked by cyclosporine, a specific ligand for CyP, in a dose-dependent manner. Furthermore, cyclosporine abolished IFN-γ production by PBMC from naïve cows as well as PBMC and CD4(+) T cells from infected/immunized cows. These results indicate that the N. caninum tachyzoite naturally produces a potent IFN-γ-inducing protein, NcCyP, which may be important for parasite survival as well as host protection

    Pregnancy status and fetal prion genetics determine PrP\u3csup\u3eSc\u3c/sup\u3e accumulation in placentomes of scrapieinfected sheep

    Get PDF
    Ovine scrapie is a fatal neurodegenerative disorder that may be transmitted through exposure to infected uterine and placental tissues. Susceptibility to scrapie is primarily controlled by polymorphisms in the prion protein (PrP) gene. Scrapie in the U.S. Suffolk breed and in many breeds in Europe occurs in sheep homozygous for glutamine (171QQ), but rarely in sheep heterozygous for glutamine and arginine (171QR) or homozygous for arginine (171RR) at codon 171 of the PrP gene. This study demonstrated that accumulation of PrPSc in uterine-placental epithelial cells in the placentome was determined by fetal PrP genotype and the pregnancy status of scrapie-infected ewes. PrPSc was detected in 171QQ placentomes of infected ewes, but not in placentomes of infected ewes pregnant with 171QR conceptuses or in the non-pregnant uterus of infected ewes. The distribution of PrPSc plaques in placentomes was temporally associated with stage of gestation. There was a tendency toward increased size and number of placentomal PrPSc plaques from the endometrial stalk (maternal side) to chorionic plate (fetal side). These results indicate that accumulation of PrPSc is eliminated or reduced to undetectable levels in reproductive and placental tissues if infected ewes are not pregnant or conceive conceptuses with a resistant PrP genotype
    corecore