1,486 research outputs found

    Evolution and control of the phase competition morphology in a manganite film

    Full text link
    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.Comment: Published versio

    Tidal disruption rate suppression by the event horizon of spinning black holes

    Full text link
    The rate of observable tidal disruption events (TDEs) by the most massive black holes (BHs) is suppressed due to direct capture of stars by the event horizon. This suppression effect depends on the shape of the horizon and holds the promise of probing the spin distribution of dormant BHs at the centers of galaxies. By extending the frozen-in approximation commonly used in the Newtonian limit, we propose a general relativistic criterion for the tidal disruption of a star of given interior structure. The rate suppression factor is then calculated for different BH masses, spins, and realistic stellar populations. We find that either a high BH spin (> 0.5) or a young stellar population (< 1 Gyr) allows TDEs to be observed from BHs significantly more massive than 10^8 solar masses. We call this spin-age degeneracy (SAD). This limits our utility of the TDE rate to constrain the BH spin distribution, unless additional constraints on the age of the stellar population or the mass of the disrupted star can be obtained by modeling the TDE radiation or the stellar spectral energy distribution near the galactic nuclei.Comment: 19 pages, 14 figures, 3 tables; submitted to MNRA

    MaturePred: Efficient Identification of MicroRNAs within Novel Plant Pre-miRNAs

    Get PDF
    MicroRNAs (miRNAs) are a set of short (19∼24 nt) non-coding RNAs that play significant roles as posttranscriptional regulators in animals and plants. The ab initio prediction methods show excellent performance for discovering new pre-miRNAs. While most of these methods can distinguish real pre-miRNAs from pseudo pre-miRNAs, few can predict the positions of miRNAs. Among the existing methods that can also predict the miRNA positions, most of them are designed for mammalian miRNAs, including human and mouse. Minority of methods can predict the positions of plant miRNAs. Accurate prediction of the miRNA positions remains a challenge, especially for plant miRNAs. This motivates us to develop MaturePred, a machine learning method based on support vector machine, to predict the positions of plant miRNAs for the new plant pre-miRNA candidates.A miRNA:miRNA* duplex is regarded as a whole to capture the binding characteristics of miRNAs. We extract the position-specific features, the energy related features, the structure related features, and stability related features from real/pseudo miRNA:miRNA* duplexes. A set of informative features are selected to improve the prediction accuracy. Two-stage sample selection algorithm is proposed to combat the serious imbalance problem between real and pseudo miRNA:miRNA* duplexes. The prediction method, MaturePred, can accurately predict plant miRNAs and achieve higher prediction accuracy compared with the existing methods. Further, we trained a prediction model with animal data to predict animal miRNAs. The model also achieves higher prediction performance. It further confirms the efficiency of our miRNA prediction method.The superior performance of the proposed prediction model can be attributed to the extracted features of plant miRNAs and miRNA*s, the selected training dataset, and the carefully selected features. The web service of MaturePred, the training datasets, the testing datasets, and the selected features are freely available at http://nclab.hit.edu.cn/maturepred/

    Quasinormal modes and stability of higher dimensional rotating black holes under massive scalar perturbations

    Full text link
    We consider the stability of six-dimensional singly rotating Myers-Perry black holes under massive scalar perturbations. Using Leaver's continued fraction method, we compute the quasinormal modes of the massive scalar fields. All modes found are damped under the quasinormal boundary conditions. It is also found that long-living modes called quasiresonances exist for large scalar masses as in the four-dimensional Kerr black hole case. Our numerical results provide a direct and complement evidence for the stability of six-dimensional MP black holes under massive scalar perturbation.Comment: 11 pages,9 figure

    Tree Structure-Aware Few-Shot Image Classification via Hierarchical Aggregation

    Full text link
    In this paper, we mainly focus on the problem of how to learn additional feature representations for few-shot image classification through pretext tasks (e.g., rotation or color permutation and so on). This additional knowledge generated by pretext tasks can further improve the performance of few-shot learning (FSL) as it differs from human-annotated supervision (i.e., class labels of FSL tasks). To solve this problem, we present a plug-in Hierarchical Tree Structure-aware (HTS) method, which not only learns the relationship of FSL and pretext tasks, but more importantly, can adaptively select and aggregate feature representations generated by pretext tasks to maximize the performance of FSL tasks. A hierarchical tree constructing component and a gated selection aggregating component is introduced to construct the tree structure and find richer transferable knowledge that can rapidly adapt to novel classes with a few labeled images. Extensive experiments show that our HTS can significantly enhance multiple few-shot methods to achieve new state-of-the-art performance on four benchmark datasets. The code is available at: https://github.com/remiMZ/HTS-ECCV22.Comment: 22 pages, 9 figures and 4 tables Accepted by ECCV 202

    Giant spin-vorticity coupling excited by shear-horizontal surface acoustic waves

    Full text link
    A non-magnetic layer can inject spin-polarized currents into an adjacent ferromagnetic layer via spin vorticity coupling (SVC), inducing spin wave resonance (SWR). In this work, we present the theoretical model of SWR generated by shear-horizontal surface acoustic wave (SH-SAW) via SVC, which contains distinct vorticities from well-studied Rayleigh SAW. Both Rayleigh- and SH-SAW delay lines have been designed and fabricated with a Ni81Fe19/Cu bilayer integrated on ST-cut quartz. Given the same wavelength, the measured power absorption of SH-SAW is four orders of magnitudes higher than that of the Rayleigh SAW. In addition, a high-order frequency dependence of the SWR is observed in the SH-SAW, indicating SVC can be strong enough to compare with magnetoelastic coupling

    COVER: A Heuristic Greedy Adversarial Attack on Prompt-based Learning in Language Models

    Full text link
    Prompt-based learning has been proved to be an effective way in pre-trained language models (PLMs), especially in low-resource scenarios like few-shot settings. However, the trustworthiness of PLMs is of paramount significance and potential vulnerabilities have been shown in prompt-based templates that could mislead the predictions of language models, causing serious security concerns. In this paper, we will shed light on some vulnerabilities of PLMs, by proposing a prompt-based adversarial attack on manual templates in black box scenarios. First of all, we design character-level and word-level heuristic approaches to break manual templates separately. Then we present a greedy algorithm for the attack based on the above heuristic destructive approaches. Finally, we evaluate our approach with the classification tasks on three variants of BERT series models and eight datasets. And comprehensive experimental results justify the effectiveness of our approach in terms of attack success rate and attack speed. Further experimental studies indicate that our proposed method also displays good capabilities in scenarios with varying shot counts, template lengths and query counts, exhibiting good generalizability
    corecore