58 research outputs found

    Genome-wide analysis of transcriptome and histone modifications in Brassica napus hybrid

    Get PDF
    Although utilization of heterosis has largely improved the yield of many crops worldwide, the underlying molecular mechanism of heterosis, particularly for allopolyploids, remains unclear. Here, we compared epigenome and transcriptome data of an elite hybrid and its parental lines in three assessed tissues (seedling, flower bud, and silique) to explore their contribution to heterosis in allopolyploid B. napus. Transcriptome analysis illustrated that a small proportion of non-additive genes in the hybrid compared with its parents, as well as parental expression level dominance, might have a significant effect on heterosis. We identified histone modification (H3K4me3 and H3K27me3) variation between the parents and hybrid, most of which resulted from the differences between parents. H3K4me3 variations were positively correlated with gene expression differences among the hybrid and its parents. Furthermore, H3K4me3 and H3K27me3 were rather stable in hybridization and were mainly inherited additively in the B. napus hybrid. Together, our data revealed that transcriptome reprogramming and histone modification remodeling in the hybrid could serve as valuable resources for better understanding heterosis in allopolyploid crops

    Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas, China

    Get PDF
    Concentrations and distribution characteristics of organophosphate esters (OPEs) in surface sediment samples were analyzed and discussed for the first time in the open Bohai Sea (BS) and YellowSea (YS). Three halogenated OPEs [ tris-(2-chloroethyl) phosphate (TCEP), tris-(1-chloro-2-propyl) phosphate (TCPP), and tris-(1,3-dichloro2- propyl) phosphate (TDCPP)] and five non-halogenated OPEs [ tri-isobutyl phosphate (TiBP), tri-n-butyl phosphate (TnBP), tripentyl phosphate (TPeP), triphenyl phosphate (TPhP) and tris-(2-ethylhexyl) phosphate (TEHP)] were detected in this region. The concentrations of eight OPEs in total (Sigma 8OPEs) ranged from 83 to 4552 pg g(-1) dry weight (dw). The halogenated OPEs showed higher abundances than the non-halogenated ones did, with TCEP, TCPP, and TEHP the main compounds. Generally, concentrations of OPEs in the BS were higher than those in the YS. Riverine input (mainly the Changjiang DilutedWater (CDW)) and deposition effect in the mud areas might have influenced the spatial distributions of OPEs. Correlation between OPE concentrations and total organic carbon (TOC) indicated TOC was an effective indicator for the distribution of OPEs. Inventory analysis of OPEs implied that sea sediment might not be the major reservoir of these compounds. (C) 2017 Elsevier B.V. All rights reserved.</p

    Lipid transporter LSR1 positively regulates leaf senescence in Arabidopsis

    No full text
    Senescence is the final stage in the life history of a leaf, whereby plants relocate nutrients from leaves to other developing organs. Recent efforts have begun to focus on understanding the network-based molecular mechanism that incorporates various environmental signals and leaf age information and involves a complex process with the coordinated actions of multiple pathways. Here, we identified a novel participant, named LSR1 (Leaf Senescence Related 1), that involved in the regulation of leaf senescence. Loss-of-function lsr1-1 mutant showed delayed leaf senescence whereas the overexpression of LSR1 accelerated senescence. LSR1 encodes a lipid transfer protein, and the results show that the protein is located in chloroplast and intercellular space. The LSR1 may be involved in the regulation of leaf senescence by transporting lipids in plants

    Protocol to image deuterated propofol in living rat neurons using multimodal stimulated Raman scattering microscopy

    No full text
    Summary: Propofol is a widely used anesthetic important in clinics, but like many other bioactive molecules, it is too small to be tagged and visualized by fluorescent dyes. Here, we present a protocol to visualize deuterated propofol in living rat neurons using stimulated Raman scattering (SRS) microscopy with carbon-deuterium bonds serving as a Raman tag. We describe the preparation and culture of rat neurons, followed by optimization of the SRS system. We then detail neuron loading and real-time imaging of anesthesia dynamics.For complete details on the use and execution of this protocol, please refer to Oda et al.1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics

    Multidimensional forecasting of electricity sales in Hunan Province based on decomposition-integration ideas

    No full text
    As the focus of power companies such as State Grid Corporation of China, electricity sales forecasting is closely related to the development of enterprises and the country. The importance of accurate electricity sales forecasting in the context of electricity reform has become more and more prominent. The article takes electricity sales in Hunan Province as the research object, and constructs a more complete monthly electricity sales forecasting system based on the decomposition-integration idea, correlating electricity sales impact factors, and combining quantitative and qualitative analyses by categories. The prediction results show that the electricity sales forecasting model proposed in this paper has a high prediction accuracy under the existing data capacity level

    Short-term load forecasting based on feature mining and deep learning of big data of user electricity consumption

    No full text
    This study proposes a short-term load prediction method of a bidirectional long short-term memory network based on feature mining of the power consumption big data in combination with the attention mechanism (AT) of Bayesian optimization to address the problems that a considerable amount of feature factors exist and the feature relationship is obscured in the historical power consumption big data. The method comprehensively considers the global features of the power consumption data in space and the local features in time. First, the Cen-CK-means clustering method is used to cluster the electricity consumption data of users, and the statistical, combination, and time category characteristics are extracted according to the meteorological factors related to load over multiple time scales. Second, the Bayesian and bidirectional long and short memory networks are combined to extract the temporal and spatial characteristics of the load data itself. Meanwhile, the AT is introduced to automatically assign the corresponding weights to the hidden layer state of the bidirectional long and short memory. This task is carried out to distinguish the importance of the different time load series, which can effectively reduce the loss of historical information and highlight information about key historical time points. Finally, taking the first type of load as an example, compared with the SVP, RBPNN, BiLSTM, and BO-BiLSTM algorithms, the MAPE index is reduced by 1.05%, 1.75%, 0.52%, and 0.26%, respectively. RMSE decreased by 186.61, 154.93, 91.88, and 15.76 MW, respectively, while R2 increased by 0.04, 0.07, 0.03, and 0.03, respectively. In the one-week forecast time, MAPE index decreased by 1.97%, 2.44%, 1.21%, and 0.6%, respectively; RMSE decreased by 271.18, 305.7, 183.13, and 97.91 MW, respectively; and R2 increased by 0.12, 0.08, 0.04, and 0.03, respectively

    Using a peptide segment to covalently conjugate doxorubicin and taxol for the study of drug combination effect

    No full text
    Doxorubicin (Dox) and Taxol can be covalently bonded to the same peptide segment via proper structural modification. Doxorubicin-maleimide derivative links to peptide via Michael addition reaction and Taxol-Succi-NHS active ester connects to the same peptide backbone through ester-amide exchange reaction. Enzymatic transformation, as an inherent biological process, is applied here to trigger the formation of nanofiber networks from the as prepared hydrogelator precursor. The precursor which loads equal molar ratio of Dox and Taxol can self-assemble to form a red stable hydrogel after dephosphorylation reaction catalyzed by alkaline phosphatase (ALP). This hydrogel could maintain sustained release of drugs and show strong anticancer effect. This work, as a new strategy to build a co-delivery system of covalently linked Dox and Taxol, owns the potential to serve as an injectable hydrogel for therapeutic applications
    • …
    corecore