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1. Introduction

Organophosphate esters (OPEs) are organic compounds with a
phosphorus atom center that are mainly used as flame retardants and
plasticizers, as well as antifoaming agents and hydraulic fluids (Wei
et al,, 2015).With the phasing out of brominated flame retardants
(BFRs), especially polybrominated diphenyl ethers (PBDEs), in the
early 21st century, production and usage of OPEs have increased signif-
icantly (Wang et al.,, 2015). In Western Europe, production of OPEs in-
creased about 10% between 2001 and 2006 (Reemtsma et al., 2008).
In China, usage of flame retardants reached 300,000 tons (t) in 2013,
and usage of OPEs increased rapidly (Zhang, 2014). Worldwide, approx-
imately 500,000 t of OPEs was used in 2011, and the estimated market
volume of OPEs was 680,000 t in 2015 (Ou, 2011; van der Veen and
de Boer, 2012).

As flame retardants, OPEs do not covalently bond to the added mate-
rials, thus they can easily leach into the environment. Additionally, OPEs
are resistant to degradation, and hence can exist persistently in the en-
vironment (Liagkouridis et al., 2015; Wei et al., 2015; Zhang et al.,
2016). OPEs have been ubiquitously detected in the environment and
biota (Ali et al., 2012; Cao et al., 2012; Chen et al,, 2012; Fromme
et al,, 2014; Hu et al., 2014; Mihajlovic et al., 2011; Wei et al., 2015).
Even in polar regions and remote oceans, OPEs have been detected in
the atmosphere, snow, and seawater (Castro-Jimenez et al., 2014;
Moller et al,, 2012; Siihring et al., 2016; Li et al,, 2017), which indicates
their long-range transportation (LRT) ability. Once pollutants such as
OPEs enter seawater, they can undergo sedimentation processes by ab-
sorbing onto particles and settling down into marine sediment. From
this point of view, marine sediment can be a long-term repository of
these compounds (Dachs et al., 2002).

Although risk assessment of OPEs regarding human health is still in
progress, carcinogenicity, neurotoxicity, teratogenicity, cytotoxicity,
and metabolic toxicity of OPEs to other species are reported frequently,
which indicates OPEs' potential health risks to human beings (Greaves
and Letcher, 2017). For this reason, the state government of New York
has prohibited the use of tris-(2-chloroethyl) phosphate (TCEP) in
products for children under the age of three since 2013 (N.Y., 2011).
In Washington, TCEP and tris-(1,3-dichloro-2-propyl) phosphate
(TDCPP) have been banned from use in children's products and home
furniture since 2014 because of their toxicity (ESHB 1294, 2013).

The Bohai Sea (BS) and the Yellow Sea (YS) are marginal seas of
China. The BS is a semi-closed and inner sea with a mean depth of
18 m. It is surrounded by the Bohai Economic Rim, which consists of
Liaoning, Hebei, and Shandong Provinces and the municipality of Tian-
jin. The BS receives large volumes of domestic sewage and industrial
wastewater, which deteriorate the water quality significantly (Shen
etal,,2013).For the YS, it is a marginal sea that is adjacent to the Chinese
mainland (Liaoning, Shandong, and Jiangsu Provinces and the munici-
pality of Shanghai) to the west and the Korean Peninsula to the east.
The YS exchanges water with the BS to the northwest, the East China
Sea (ECS) to the south, and the Western Pacific to the east via ocean cur-
rents, such as the Kuroshio Current, Subei Coastal Water (SCW),
Changjiang Diluted Water (CDW), and Taiwan Warm Current (Wei
etal., 2016). Meanwhile, the YS suffers from deteriorating water quality
due to the dumping of huge amounts of insufficiently treated domestic
sewage and industrial wastewater (Lu et al., 2013; Wang et al., 2015).
Fig. 1 presents the hydrologic features (Guo et al., 2006) and mud
areas (deposition zones) of the BS and YS (Saito and Yang, 1993).

Given the extensive production and usage of OPEs in China and the
geographic and hydrologic features of the BS and YS, the two seas may
be main reservoirs of these compounds. Zhong et al. (2017) recently re-
ported high concentrations and the distribution patterns of seven OPEs
in the seawaters of the BS and YS. However, there are few reports on
these substances in the sediments of the BS and YS. Therefore, the con-
centrations and distributions of OPEs in these marine sediments should
be investigated to better understand the environmental behaviors of

these important pollutants. In this work, 49 surface sediment samples
from the BS and YS were collected and analyzed to (i) investigate the
concentrations, compositions, and distribution patterns of OPEs in the
marine sediments of the BS and YS; (ii) explore the factors influencing
the spatial distributions of OPEs; and (iii) derive inventories of OPEs in
the BS and YS.

2. Materials and methods
2.1. Sample collection

In September 2010, during a research cruise campaign, 49 surface
sediment samples (top 2 cm) were collected from the BS and YS with
a stainless steel box corer. All the collected samples were instantly
stored at — 20 °C before freeze-drying. The locations of all the sampling
sites are shown in Fig. 2.

2.2. Chemicals and materials

The native standards, including TCEP, tris-(1-chloro-2-propyl) phos-
phate (TCPP), TDCPP, tri-isobutyl phosphate (TiBP), tri-n-butyl phos-
phate (TnBP), triphenyl phosphate (TPhP), tripentyl phosphate (TPeP)
and tris-(2-ethylhexyl) phosphate (TEHP) were supplied by Sigma-
Aldrich. Deuterated surrogate standards, e.g. d,7,-TnBP (99%), d5-TPhP
(99%) and d,-TCEP (99%) were purchased from Sigma-Aldrich. Ace-
tone, n-hexane (purity >99%) and dichloromethane (DCM) were ob-
tained from LGC Standards (Wesel, Germany).

Neutral silica gel (0.1-0.2 mm; Macherey-Nagel, Diiren, Germany)
and anhydrous sodium sulfate (purity 99%; Merck, Darmstadt,
Germany) were cleaned with dichloromethane (DCM) using a Soxhlet
extractor for 24 h, and then baked at 450 °C for 12 h. All organic solvents
used were of analytical grade, and redistilled using a glass system. Lab-
oratory glassware was baked at 450 °C for 12 h, and then rinsed with ac-
etone and n-hexane.

2.3. Sample extraction and fractionation

Sediment samples (10 g) were packed in extraction thimbles; spiked
with 20 pL of 500 pg uL ™" of d7-TnBP, d15-TPhP, and d,,-TCEP as surro-
gate standards; and extracted with DCM for 18 h at a flow rate of
5 mL min~ ! using a Soxhlet extractor. The extracts were evaporated
to 1-2 mL using hexane as the keeper and further cleaned on assilica col-
umn (2.5 g, 10% water deactivated) on which 3 g anhydrous granulated
sodium sulfate was added. The extract was purified via elution with
20 mL hexane (Fraction 1) and 20 mL acetone/DCM (V/V = 1:1) (Frac-
tion 2). Fraction 2 was concentrated down to 150 pL by a roto-
evaporator and nitrogen blower. Then, 10 pL of 50 pg '>C¢-PCB-208
(Wellington Laboratories, Canada) was added as the injection standard.

2.4. Instrumental analysis

The analytical method for the determination of OPEs has been de-
scribed elsewhere (Ma et al., 2017). In the current study, the samples
were analyzed using a gas chromatograph Agilent 7890A GC coupled
to a triple quadrupole mass spectrometer Agilent 7010 MS (GC-MS/
MS) equipped with a programmed temperature vaporizer (PTV) injec-
tor (Agilent Technologies, USA). The MS transfer line and the high sen-
sitivity electron impact ionization source (HSEI) were held at 280 °C and
230 °C, respectively. The MS/MS was operated in multiple reaction
monitoring (MRM) mode. The collision cell gases were nitrogen
(1.5 mL min—!) and helium (2.25 mL min~— ). Analytes were separated
on a HP-5 ms Ultra Inert capillary column (30 m x 0.25 mm i.d. x 0.25
um film thickness; J&W Scientific and Agilent Technologies, CA). One
microliter of the sample was injected in pulsed splitless mode following
an inlet temperature program of: 50 °C for 0.2 min, increased to 300 °C
at 300 °C min~!, and then held for 20 min. High purity helium
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Fig. 1. Mud areas and hydrological information of the Bohai Sea (BS) and the Yellow Sea (YS). Dashed black lines enclose the mud areas (deposition zones) in the BS and YS. Colored bar
shows the water depth of the BS and YS. Black straight lines show the boundaries of the BS, Northern Yellow Sea (NYS), and Southern Yellow Sea (SYS). Gray curved line shows the ocean
currents in the BS and YS. SCW: Subei Coastal Water; CDW: Changjiang Diluted Water; YSWC: Yellow Sea Warm Current. LZB: Laizhou Bay; BHB: Bohai Bay; LDB: Liaodong Bay. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(99.999%) was used as the carrier gas. The GC oven temperature was
held at 50 °C for 2 min; increased to 80 °C at 20 °C min~ ', then 250 °C
at 5 °C min~ ', and finally 300 °C at 15 °C min~—'; and then held for
10 min. The ions selected for quantification and quantization are listed
in Table S1. MassHunter Quantitative Analysis software (version
B05.00, Agilent Technologies, USA) was used for data processing.

Quantization was performed using the internal calibration method
based on a 10-point calibration curve for individual OPEs. The response
factors were derived from the calibration curves (10-points) made for
the response ratio between target compounds (0.0-0.5 ng uL™ ') and
surrogate standards (0.1 ng puL™1).

2.5. Quality control and quality assurance

The recovery rates of the selected OPEs for the sample preparation
procedure, including Soxhlet extraction, rotation evaporation, and ni-
trogen evaporation, were checked by spiking the extract sediments
with 50 ng standard mixture. The recoveries were from 63 + 12% to
117 + 16% for the eight OPEs selected. Moreover, extraction efficiency
was checked via twofold extraction for five particle samples, which
showed that the proportion of the eight OPEs in the first extraction
ranged from 91 + 6% for TDCPP to 99 + 0.2% for TCEP. Five procedural
blanks were extracted together with the samples. The mean concentra-
tions of OPEs in the blanks ranged from 0.4 + 0.2 pgg~ ' (TnBP) to 34 +
6 pg g~ ' (TCPPs). The method detection limits (MDLs) were derived
from the procedural blanks and quantified as the mean field blanks
plus three times the standard deviation (36) of the field blanks. The

MDLs ranged from 1 pg g~ (TPeP) to 52 pg g~ ! (TCPPs) for 10 g sedi-
ment. All the concentrations of OPEs presented in this study were
corrected for the recoveries and blanks.

3. Results and discussion
3.1. Concentrations and compositions of OPEs in the sediments

As shown in Table 1, the concentrations of the eight OPEs in total
(3gOPEs) in the surface sediments ranged from 83 to 4552 pg g~ ' dry
weight (dw), with a geometric mean (GM) concentration of
516 pg g~ ! dw. Generally, TCPP, TCEP, and TEHP were the main OPEs
in the surface sediments, and the halogenated OPEs were more abun-
dant than the non-halogenated ones. For the halogenated OPEs, TCEP
was the dominant OPE, contributing 21 + 14% to the 3gOPEs. Individual
TCEP concentrations ranged from 7 to 671 pg g~ ! dw, with a GM of
127 pg g~ ' dw. TCPP (ranged from 29 to 1521 pg g~ ' dw) was the sec-
ond highest halogenated OPE per concentration, with a GM of
83 pg g~ ! dw. For the non-halogenated OPEs, TEHP was the dominant
compound, contributing 27 4 16% to the 3gOPEs. Individual TEHP con-
centrations ranged from 8 to 3445 pg g~ ! dw, with a GM concentration
of 113 pg g~ ! dw. Following TEHP, TPhP (ranged from 7 to
209 pg g~ ! dw) was the second most abundant compound of the
non-halogenated OPEs, with a GM concentration of 40 pg g~ dw. Ex-
cluding TPeP (detection rate: 69%), all the OPEs analyzed showed
100% detection rates.
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Fig. 2. Locations of sampling sites and concentrations and distributions of the total and individual organophosphate esters (OPEs).

As shown in Fig. 3, the compositions of OPEs in some sites showed
unique features. For sites B29, B30, and B33 in the mouth of Laizhou
Bay (LZB) and B28 on the southern edge of the mouth of Bohai Bay
(BHB), TEHP was the predominating compound and accounted for
>50% of the 2gOPE compositions. Meanwhile, in the western part of
the mouth of Liaodong Bay (LDB), the percentages of TCEP, TDCPP,
and TiBP obviously increased and the percentage composition of TCEP
was at a level comparable with or higher than that of TEHP. This indi-
cates different OPE sources for LZB, BHB, and LDB. According to Wang
et al. (2015), OPEs in LZB, BHB, and LDB mainly come from rivers
draining into these bays. Therefore, the composition differences of

OPEs in the bay mouth areas might reflect, at least partially, the compo-
sition differences in riverine OPE inputs.

In the Northern Yellow Sea (NYS), especially at B39, B41, B43, and
B44, an obvious feature of OPE composition was that the percentage
of TPeP rose significantly. At B41, TPeP was the predominant OPE and
even surpassed the percentages of TCEP and TEHP. Based on the obvious
increase in compositions of TPeP, certain sources may exist for this com-
pound. According to Yang and Liu (2007), the sediment of this area
mainly comes from the Yellow River and is transported through the
Bohai Strait. However, the low TPeP composition for the BS (Figs. 2
and 3) implied the compound might not come from the BS. Given that
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Table 1
Statistics of OPEs in the Bohai and Yellow Seas (n = 49).
Study regions Values (pgg™ ") Halogenated OPEs Non-halogenated OPEs Total
TCPP TCEP TDCPP TiBP TnBP TPeP TEHP TPhP
BS&YS Maximum 1521 671 54 1109 54 387 3445 209 4552
Minimum 29 7 2 8 4 <MDL 8 7 83
Geometric mean 83 127 12 23 12 2 113 40 516
BS Maximum 1521 537 34 1109 54 55 3445 128 4552
Minimum 39 52 4 28 9 <MDL 51 22 205
Geometric mean 113 202 18 85 24 2 375 53 1137
YS Maximum 414 671 54 34 21 387 583 209 1864
Minimum 29 7 2 8 4 <MDL 8 7 83
Geometric mean 76 111 11 16 10 2 80 36 411

OPEs are typical terrigenous pollutants, TPeP in this area probably
comes from the Liaodong and/or Shandong Peninsulas. In the Southern
Yellow Sea (SYS), H21, H23, H25, and H36 showed similar composi-
tions. At these sites, TCPP was the dominating compound and the per-
centage of TnBP also was increased. According to Zhong et al. (2017),
one of the largest OPE manufacturers is located in northern Jiangsu
Province, China. It produces 20,000 t of OPEs annually, with TCPP its
main product. That is to say, an increase of TCPP in the OPE composition
for these sites might be attributed to the input of that OPE manufacturer.

From the North Pacific to the Arctic Ocean, OPEs were investigated by
Ma et al. (2017), and the concentrations of seven OPEs in total (2,0PEs)
(TCEP, TCPP, TDCPP, TiBP, TnBP, TPeP, and TPhP) ranged from 159 to
4658 pg g~ !, with a mean concentration of 872 pg g~ ! dw. Similar to
our study, the halogenated OPEs had higher concentrations than the
non-halogenated ones, and TCEP was also the predominant compound,
contributing 54 + 18% to the total OPEs, with a highest concentration of
3903 pg ¢~ ! dw. However, TiBP in their study was the predominant
non-halogenated OPE. This can be explained by the fact that they did
not analyze the extremely hydrophobic TEHP, which has a log K, value
of 9.49. Actually, for the Schwechat River, TEHP was not detected in the
river water, whereas a high level of this compound (140,000 pg g~ 1)
was detected in the sediment (Martinez-Carballo et al., 2007). Even in
the BS and YS, TEHP was not detected in the seawater (Zhong et al.,
2017) whereas high concentrations of this compound were detected in
the sediment in the current study. This can be explained by the fact that
TEHP has high hydrophobicity, thus is liable to be absorbed onto
suspended particulate matter and then prone to deposition in the sedi-
ment (Reemtsma et al.,, 2008; Wei et al., 2015).

3.2. Spatial distribution of OPEs in the sediments and its influencing factors

Fig. 2 shows the overall distribution pattern of OPEs in the BS and YS.
Generally, the concentrations of the 2gOPEs in the BS were higher than
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those in the YS (p <0.01). As shown in Fig. 2 and Table 1, the concentra-
tions of the 3gOPEs ranged from 205 to 4552 pg g~ ! dw, with a GM of
1137 pg g~ ! dw in the BS. However, in the YS, the concentrations of
the 3gOPEs ranged from 83 to 1864 pg g~ ! dw, with a GM of
411 pg ¢! dw. For individual OPEs, all the compounds, except for
TPeP, showed similar patterns to that of the 3gOPEs, i.e., higher concen-
trations occurred in the BS. The TPeP concentrations in the YS (ranged
from <MDL to 387 pg g~ ! dw) were higher than those in the BS (ranged
from <MDLto 55 pg g~ ! dw). This implied that additional input of TPeP
(which might come from the Liaodong and/or Shandong Peninsulas)
might exist in the YS, as mentioned in Section 3.1. Higher concentra-
tions of the 3gOPEs and individual OPEs in the BS might result from
the higher number of pollution sources in the BS and the poorer water
exchange capacity of the BS (Zhang et al., 2013). Yet, Zhong et al.
(2017) reported similar OPE distribution patterns in the water phases
of the BS and YS. Details about the OPE concentrations are listed in
Table S2 in the supporting information.

For the individual sites, B30 in the mouth of LZB showed the highest
concentration (4552 pg g~ ! dw) of the 350PEs among all the sites. In
the mouth of BHB, B27 and B28 also showed high concentrations,
whereas their neighboring sites (B24 and B25 in the north part of the
mouth of BHB) showed relatively low 2gOPE concentrations. In the
mouth of LDB (B18, B19, B20, and B21), from the west to the east, the
concentrations of the 3gOPEs showed a descending trend. Furthermore,
almost all the sites with high OPE concentrations in the BS resided in the
mud areas (sediment deposition zone) (Figs. 1 and 2). Generally, high
concentration of OPEs in the bay mouths might indicate serious pollu-
tion in LZB, BHB, and LDB.

Like the patterns for the BS, both in the NYS and SYS, most of the
high concentrations occurred in the mud areas or their adjacent regions
(Figs. 1 and 2). For example, B43 showed the highest 3gOPE concentra-
tion among all the sites in the NYS and its location was adjacent to the
central mud area of the NYS (no sediment samples were collected in

I TiBP
[ TuBP
[ 1 TCEP
[ 1 XTCPPs
[ ] TPeP
[ TDCPP
B TPAP
B TEHP
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Fig. 3. Composition profiles of the investigated organophosphate esters (OPEs) in the surface sediments of several individual sites.
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the mud area of the NYS). Similarly, in the SYS, for some transects (tran-
sect: HO1, HO3, HO5, HO7, and HO8; transect: H21, H23, H25, H27, and
H28), sites residing in the mud areas showed higher concentrations
than their neighboring sites did (concentrations of HO5, HO7, and HO8
were higher than those of HO1 and HO3; concentrations of H21, H27,
and H28 were higher than those of H23 and H25). This phenomenon
can be explained by the fact that hydrophobic organic pollutants (di-
chlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexanes
(HCHs)) can be co-transported with suspended particles and deposited
in the mud areas of the BS and YS (Hu et al., 2011). In our study, most of
the OPEs (log K,y values ranged from 1.44 to 9.49 for the OPEs studied
in this work) had log K, values comparable with or higher than those
of DDT (log K, = 6.90) and HCHs (log K,y values ranged from 3.72 to
4.14 for the most common isomers) (Rani et al., 2017; Wang et al.,
2015). That is to say, OPEs might present comparable or higher particle
affinity and might also be liable to finally depositing in the mud areas.

Exceptionally, though H38 does not reside in the mud area, it still
presented a higher 3gOPE concentration than those in its neighboring
sites (H35, H36, H40, and H41). This might be attributed to the input
of the Changjiang Diluted Water (CDW). The CDW prevails during sum-
mer and presents a tongue-shaped and northeastward extension (Wei
et al,, 2016) under which H38 resides. Together with the CDW, many
substances derived from the Yangtze River (particles and pollutants)
are trapped and settle down to the sediment (Hu et al., 2011), which
might result in the higher 33OPE concentration for H38. Taken together,
riverine substance input and deposition effect of mud areas might be
the main factors that influenced the distributions of OPEs in the
sediments.

Additionally, a distribution pattern of TOC-normalized OPE concen-
trations is presented in Fig. S1 in the supporting information. Compared
with Fig. 2, a high contribution of OPEs to the south Yellow Sea from the
Yangtze River discharge can be distinguished, and a high load of OPEs in
the nearshore region compared to the offshore region was also
highlighted.

3.3. Correlation between OPEs and total organic carbon (TOC)

TOC is an important parameter for assessing the environmental sta-
tus of aquatic ecosystems in marine and estuarine sediments (Hu et al.,
2008). In this study, the TOC of 45 sites (Table S2; data for sites B25, H21,
H35, and H43 was not obtained) was analyzed, and a positive correla-
tion between OPEs and TOC was found (n = 45, p <0.01). This result im-
plied that TOC might be used as a tool for the estimation of organic
pollutants (Li et al., 2016) such as OPEs. However, in the BS only, poor
correlation was found between TOC and OPEs, whereas, in the YS, pos-
itive correlation between the two was still present (see details in
Table S3). A reasonable explanation of this pattern might be that, in
the BS, spatially limited or defined sources of OPEs near the coast
existed. These sources might disrupt the correlation between OPEs
and TOC. Rivers draining into the BS might be among the sources of

high concentrations of OPEs (up to 1,548,640 pg L~ ! in the water
phase) (Wang et al., 2015), though concentrations in the sediment
and suspended particles of these rivers were not reported. The high
level of OPEs detected at site B33 might result from the input of the ad-
jacent Jiehe River (808,080 pg L™ !, water phase) (Wang et al., 2015),
which also emphasized the importance of riverine input, as mentioned
in Section 3.2. Additionally, landfills and sewage outfalls in the coastal
areas may also be one of the sources (Zhong et al., 2017). In this
study, high concentrations of OPEs were detected at sites B27 and B28,
which were adjacent to a pollutant discharge zone (SOA, 2016). For
these two sites, which are located in the mud areas, apart from the de-
position effect of OPEs mentioned in Section 3.2, point sources (the pol-
lutant discharge zone) might be another factor that resulted in the high
concentrations. For B28 was closer to the pollutant discharge zone and
showed higher OPE concentrations than those of B27, which is a typical
pattern for point sources.

3.4. Inventories of OPEs in the BS and YS

Given the frequently detected concentrations of OPEs in the surface
sediments of the BS and YS, mass inventories regarding this area could
be derived. Because the average sedimentation rates in the BS and YS
were estimated as 0.31 cma~ ! (Li et al., 2002), the 2 cm of top sediment
captured would reflect the OPE inputs since 2004, during which usage
of BFRs in East Asian countries began to decrease and was gradually re-
placed by usage of OPE flame retardants (Ou, 2011).

The calculation method used was as previously reported (Jonsson
et al.,, 2003), and detailed information regarding such is provided in
the supporting information. As shown in Table 2, the inventories of
the 3gOPEs ranged from 474 to 26,000 kg, with a GM of 2499 kg. For
the halogenated OPEs, TCEP was estimated to range from 38 to
3833 kg, with a GM of 727 kg, whereas the inventories of non-
halogenated TEHP were estimated to range from 46 to 19,680 kg, with
a GM of 648 kg. Compared with the amount of OPE usage in China
(Ou, 2011), input of OPEs to the sediment still only accounted for a
small proportion. Meanwhile, the estimated burden of OPEs in the sea-
waters of the BS and YS was about 396,604 kg (see calculation method
in the supporting information), which was much higher than that of the
sediment OPEs. According to Ma et al. (2017), the inventories of the
3,0PEs (as mentioned in Section 3.1) ranged from 17,000 to
292,000 kg, with an average value of 78,000 kg (Table 2), in the Central
Arctic Ocean Basin (area: 4.489 x 10° km?), which also accounted for a
small proportion of the OPE production/usage volumes in the United
States and Europe. Taken together, the sea sediments of the BS, YS,
and Central Arctic Ocean Basin might not be the only reservoirs of
OPE:s for their corresponding regions.

However, in the Great Lakes (Lakes Superior, Michigan, and Ontario;
total area: 1.58 x 10° km?), the average inventory of the seven OPEs that
were also analyzed in the present study was 22,497 kg (Cao et al., 2017)
(Table 2). In Lake Michigan, 17 tons of OPEs resided in the lake

Table 2
Estimation results of the inventories of OPEs in the sediments of the Bohai and Yellow Seas and those reported in other studies.
Studied regions Values (kg) Halogenated OPEs Non-halogenated OPEs Total
TCPP TCEP TDCPP TiBP TnBP TPeP TEHP TPhP
BS & YS? Maximum 8689 38,339 3089 63,359 3099 2211 19,680 1194 26,000
Minimum 166 38 11 45 23 3 46 40 474
Geometric mean 476 727 93 130 70 13 648 2256 2499
The Central Arctic Ocean Basin® Maximum 26,000 219,000 9200 16,000 12,000 4600 - 5900 292,000
Minimum 570 12,000 0 3600 1100 0 - 0 17,000
Average 7300 5400 1700 7800 4000 930 - 1600 78,000
The Great Lakes® Average 3040 906 1237 7357 5446 - 1087 3424 22,497

-: not analyzed in the cited studies. BS: the Bohai Sea; YS: the Yellow Sea.
¢ Data from this study.
b Data from Ma et al. (2017).
¢ Data from Cao et al. (2017).
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sediment, which accounted for approximately 25% of the total burden
(63 tons) (Cao et al., 2017). This phenomenon reflected the different
OPE distributions in the water and corresponding sediment in seas
and freshwater lakes.

4. Conclusion

This study focused on the concentrations, compositions, and distri-
butions of OPEs in the sediments of the BS and YS. High concentrations
of OPEs were detected, with TCEP and TEHP being the dominant com-
pounds of halogenated and non-halogenated OPEs, respectively. For
the extensively reported carcinogenicity, neurotoxicity, teratogenicity,
cytotoxicity, and metabolic toxicity to organisms and human beings,
high concentrations of OPEs in certain coastal regions might pose
threats to marine organisms, especially benthic ones. Actions should
be taken to alleviate OPE pollution in these areas, and more attention
should be paid to the potential environmental risks of OPEs. Riverine
input and transportation and deposition of suspended particles in
mud areas might be the main factors that influence the distribution pat-
terns of OPEs in marine sediment. Positive correlation between TOC and
OPEs in the whole region implied a common source of TOC and organic
pollutants. However, the deviation of TOC and OPEs in the BS implied
limited or defined sources of OPEs near the coast. The input of OPEs cal-
culated for the sediments only accounted for a small proportion of OPE
usage in China. This indicated that sea sediment might not be the main
reservoir of OPEs.
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