2 research outputs found

    Core-Packing-Related Vibrational Properties of Thiol-Protected Gold Nanoclusters and Their Excited-State Behavior

    No full text
    Thiolate-protected gold nanoclusters, with unique nuclearity- and structure-dependent properties, have been extensively used in energy conversion and catalysis; however, the mystery between kernel structures and properties remains to be revealed. Here, the influence of core packing on the electronic structure, vibrational properties, and excited-state dynamics of four gold nanoclusters with various kernel structures is explored using density functional theory combined with time-domain nonadiabatic molecular dynamics simulations. We elucidate the correlation between the geometrical structure and excited-state dynamics of gold nanoclusters. The distinct carrier lifetimes of the four nanoclusters are attributed to various electron–phonon couplings arising from the different vibrational properties caused by core packing. We have identified specific phonon modes that participate in the electron–hole recombination dynamics, which are related to the gold core of nanoclusters. This study paints a physical picture from the geometric configuration, electronic structure, vibrational properties, and carrier lifetime of these nanoclusters, thereby facilitating their potential application in optoelectronic materials

    Core-Packing-Related Vibrational Properties of Thiol-Protected Gold Nanoclusters and Their Excited-State Behavior

    No full text
    Thiolate-protected gold nanoclusters, with unique nuclearity- and structure-dependent properties, have been extensively used in energy conversion and catalysis; however, the mystery between kernel structures and properties remains to be revealed. Here, the influence of core packing on the electronic structure, vibrational properties, and excited-state dynamics of four gold nanoclusters with various kernel structures is explored using density functional theory combined with time-domain nonadiabatic molecular dynamics simulations. We elucidate the correlation between the geometrical structure and excited-state dynamics of gold nanoclusters. The distinct carrier lifetimes of the four nanoclusters are attributed to various electron–phonon couplings arising from the different vibrational properties caused by core packing. We have identified specific phonon modes that participate in the electron–hole recombination dynamics, which are related to the gold core of nanoclusters. This study paints a physical picture from the geometric configuration, electronic structure, vibrational properties, and carrier lifetime of these nanoclusters, thereby facilitating their potential application in optoelectronic materials
    corecore