5,894 research outputs found

    From Petrov-Einstein-Dilaton-Axion to Navier-Stokes equation in anisotropic model

    Get PDF
    In this paper we generalize the previous works to the case that the near-horizon dynamics of the Einstein-Dilaton-Axion theory can be governed by the incompressible Navier-Stokes equation via imposing the Petrov-like boundary condition on hypersurfaces in the non-relativistic and near-horizon limit. The dynamical shear viscosity η\eta of such dual horizon fluid in our scenario, which isotropically saturates the Kovtun-Son-Starinet (KSS) bound, is independent of both the dilaton field and axion field in that limit.Comment: 13 pages,no figures; v2: 15 page, Equation.(33), some discussions and references added, minor corrections , Version accepted for publication in Physics Letters

    A new potential radiosensitizer: ammonium persulfate modified WCNTs

    Get PDF
    Radiotherapy plays a very important role in cancer treatment. Radiosensitizers have been widely used to enhance the radiosensitivity of cancer cells at given radiations. Here we fabricate multi-walled carbon nanotubes with ammonium persulfate, and get very short samples with 30-50 nanometer length. Cell viability assay show that f-WCNTs induce cell death significantly. We hypothesize that free radicals originated from hydroxyl and carbonyl groups on the surface of f-WCNTs lead cell damage

    Tunable Quantum Beam Splitters for Coherent Manipulation of a Solid-State Tripartite Qubit System

    Get PDF
    Coherent control of quantum states is at the heart of implementing solid-state quantum processors and testing quantum mechanics at the macroscopic level. Despite significant progress made in recent years in controlling single- and bi-partite quantum systems, coherent control of quantum wave function in multipartite systems involving artificial solid-state qubits has been hampered due to the relatively short decoherence time and lacking of precise control methods. Here we report the creation and coherent manipulation of quantum states in a tripartite quantum system, which is formed by a superconducting qubit coupled to two microscopic two-level systems (TLSs). The avoided crossings in the system's energy-level spectrum due to the qubit-TLS interaction act as tunable quantum beam splitters of wave functions. Our result shows that the Landau-Zener-St\"{u}ckelberg interference has great potential in the precise control of the quantum states in the tripartite system.Comment: 24 pages, 3 figure

    Remote information concentration and multipartite entanglement in multilevel systems

    Full text link
    Remote information concentration (RIC) in dd-level systems (qudits) is studied. It is shown that the quantum information initially distributed in three spatially separated qudits can be remotely and deterministically concentrated to a single qudit via an entangled channel without performing any global operations. The entangled channel can be different types of genuine multipartite pure entangled states which are inequivalent under local operations and classical communication. The entangled channel can also be a mixed entangled state, even a bound entangled state which has a similar form to the Smolin state, but has different features from the Smolin state. A common feature of all these pure and mixed entangled states is found, i.e., they have d2d^2 common commuting stabilizers. The differences of qudit-RIC and qubit-RIC (d=2d=2) are also analyzed.Comment: 10 pages, 3 figure
    • …
    corecore