
Physics Letters B 752 (2016) 1–6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

From Petrov–Einstein–Dilaton–Axion to Navier–Stokes equation in 

anisotropic model

Wen-Jian Pan a, Yu Tian b,d, Xiao-Ning Wu c,d

a Institute of Theoretical Physics, Beijing University of Technology, Beijing 100124, China
b School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
c Institute of Mathematics, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190, China
d State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 September 2015
Received in revised form 19 October 2015
Accepted 4 November 2015
Available online 10 November 2015
Editor: M. Cvetič

In this paper we generalize the previous works to the case that the near-horizon dynamics of the 
Einstein–Dilaton–Axion theory can be governed by the incompressible Navier–Stokes equation via 
imposing the Petrov-like boundary condition on hypersurfaces in the non-relativistic and near-horizon 
limit. The dynamical shear viscosity η of such dual horizon fluid in our scenario, which isotropically 
saturates the Kovtun–Son–Starinet (KSS) bound, is independent of both the dilaton field and axion field 
in that limit.
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1. Introduction

The correspondence between anti-de Sitter gravity and Confor-
mal Field Theory (AdS/CFT) proposed in [1–4] provides a powerful 
tool on the connection between gravitational physics in the bulk 
and hydrodynamics living on its boundary. Since Damour firstly 
found that the gravitational excitations of the black hole horizon 
behaved like a fluid [5], the hydrodynamical behavior of gravity 
has been extensively studied in literature [6–23]. In particular, re-
cent progress on fluid/gravity duality in the context of AdS/CFT has 
shed more insightful light on relating the Einstein’s equation to the 
Navier–Stokes equation for a general class of spacetime geometries 
[12,13,15]. In this setup the gravitational fluctuations confined in 
between the horizon and a finite cutoff at radius r = rc , can be 
mapped into a dual holographic fluid living on the cutoff surface. 
Traditionally, directly disturbing the bulk metric under the regular-
ity condition of the horizon and fixing the induced metric on the 
boundary, the correspondence between gravitational dynamics in 
the bulk and hydrodynamics on its boundary can be constructed 
successfully in the non-relativistic long-wavelength expansion, and 
those dual hydrodynamical quantities can be also explicitly read 
off via the standard procedure in AdS/CFT dictionary, whose de-
pendence on the cutoff rc is viewed as the renormalization group 
flow in the fluid [18–23].
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Very remarkably, the gravity/fluid duality was firstly imple-
mented by imposing the Petrov-like condition on the cutoff surface 
in the near horizon limit [24] instead of the regularity condition on 
the horizon in Rindler spacetime. It has been shown that embed-
ding a hypersurface �c into a Rindler spacetime, the gravitational 
fluctuation can be reduced exactly to the incompressible Navier–
Stokes equation living on one lower dimensional flat spacetime. 
More explicitly, in this approach keeping the induced metric fixed 
and taking the extrinsic curvature as fundamental variables, one 
directly required the extrinsic curvature perturbations to satisfy 
the Petrov-like condition such that in the non-relativistic limit and 
the near horizon limit the continuous equation of the Brown–York 
tensor can give rise to the incompressible Navier–Stokes equa-
tion. In this sense, the Petrov-like condition plays an important 
holographic role on this correspondence. In contrast to traditional 
approaches, this kind of setup is mathematically much simpler and 
elegant, since it doesn’t even need to construct explicitly the met-
ric perturbation in the bulk, thus no need to solve the perturbed 
Einstein equations in the bulk either. Due to this powerful con-
dition, recently there have been greatly interesting extensions in 
[25–35].

On the other hand, an interesting conjecture, which said that 
the ratio of dynamical shear viscosity to entropy density was no 
less than 1

4π , was proposed in [36]. This is the so-called “KSS 
bound”. However, this bound was later found to be violated in the 
anisotropic holographic plasma [37]. Since then, the problem of 
KSS bound violation has attracted a great deal of attention [38–43]
in the anisotropic gravitational systems.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Motivated by the above progress, it should be interesting to ask 
how about the gravity/fluid duality under the Petrov-like boundary 
condition in the context of an anisotropic gravitational system. In 
this paper we will provide an answer to this question. It turns out 
that we can still obtain the standard Navier–Stokes equations un-
der the non-relativistic and near horizon limit, but the anisotropy 
of the gravitational background only results in an anisotropy of the 
background pressure, while the ratio of dynamical viscosity to en-
tropy density is still isotropic and saturates the KSS bound.

The rest of our paper is organized as follows. In Section 2 we 
briefly review some important formulas. In Section 3 we will de-
rive the incompressible Navier–Stokes equations on a spatially flat 
hypersurface from an anisotropic gravitational system in detail. In 
Section 4 we will give a summary and some discussions. In Ap-
pendix A we present a detailed calculation for the last term of the 
Petrov-like condition (23).

2. Some important formulas

In this section, here we would like to review some important 
relations that play the role of bridge on the gravity/fluid duality. 
Let us start with the gravitational side. Firstly, we naturally require 
p + 2 dimensional spacetime geometry to satisfy the standard Ein-
stein theory:

Gμν = −�gμν + Tμν, μ,ν = 0, . . ., p + 1, (1)

where gμν is a metric of the p + 2 dimensional spacetime, � is 
a cosmological constant and Tμν is energy momentum tensor in 
the bulk. Secondly, in order to discuss the behavior of dual fluid, 
in the p + 2 dimensional bulk space one needs to embed a p + 1
dimensional timelike hypersurface �c with a induced metric γab , 
whose extrinsic curvature Kab should satisfy the p +1 “momentum 
constraints”

Da(Kab − γab K ) = Tμbnμ, (2)

as well as the “Hamiltonian constraint”

p+1 R + Kab K ab − K 2 − 2� = −2Tμνnμnν, (3)

where Da is compatible with the induced metric on �c , namely 
Daγbc = 0, K is the trace of extrinsic curvature and nμ is the unit 
normal to �c .

For imposing Petrov-like condition on this cutoff surface one 
must decompose the p + 2 dimensional Weyl tensor into those 
p + 1 dimensional quantities in terms of the intrinsic curvature, 
extrinsic curvature and induced metric on the hypersurface. The 
framework has been specifically introduced in previous literature 
[24–26],

Cabcd = p+1 Rabcd + Kad Kbc − Kac Kbd

+ 2� − 2T

p(p + 1)
(γadγbc − γacγbd) − 1

p
γa

αγb
βγc

γ γd
δ

× (gαγ Tδβ − gαδ Tγ β − gβγ Tδα + gβδ Tγ α),

Cabc(n) = Da Kbc − Db Kac − 1

p
γa

αγb
βγc

γ nδ

× (gαγ Tδβ − gαδ Tγ β − gβγ Tδα + gβδ Tγ α),

Ca(n)c(n) = K Kac − Ka
b Kbc + γa

αγc
γ Rαγ − p+1 Rac

− 2(� − T )

p(p + 1)
γac − 1

p
γa

αγc
γ nβnδ

× (gαγ Tδβ − gαδ Tγ β − gβγ Tδα + gβδ Tγ α). (4)

Thus the Petrov-like boundary condition on �c is defined as
C(�)i(�) j = �μmi
ν�αm j

β Cμναβ = 0, (5)

where p + 2 Newman–Penrose-like vector fields satisfy the follow-
ing relations

�2 = k2 = 0, (k, �) = 1, (k,mi) = (�,mi) = 0, (mi,m j) = δi
j,

(6)

where γab = gab −nanb , Cabc(n) = Cabcμnμ . In the absence of matter 
field, the traceless Petrov-like boundary condition on �c actually 
causes p(p + 1)/2 − 1 constraints on the extrinsic curvature such 
that it can reduce exactly the (p + 1)(p + 2)/2 degrees of freedom 
of extrinsic curvature to p + 2 unconstrained variables which can 
be viewed as the energy density, pressure and velocity fields of the 
dual fluid living on the cutoff surface. The Hamiltonian constraint 
becomes a equation of state linking the energy density to pressure 
of such dual fluid, while the p + 1 momentum constraints govern 
the evolution of the dynamics of gravity which is regarded as a 
fluid living on hypersurface.

In the presence of matter field, on the surface we generally 
need further to introduce some appropriate boundary condition 
for matter field so that the total degree of freedom can correctly 
present the dual hydrodynamical behavior. For vacuum case of 
Einstein theory, it can be governed by the initial-boundary value 
problem (IBVP) [44]. Based on the idea by Friedrich and Nagy, we 
can see that Petrov-like boundary condition can be viewed as the 
free boundary data of IBVP of vacuum Einstein system. This hint 
gives us a guideline for searching a suitable boundary condition 
for matter field.

3. Navier–Stokes equations in the anisotropic spacetime

In this section, employing the Petrov-like boundary condition 
on the cutoff surface embedded in a five-dimensional anisotropic 
spacetime, we will explicitly demonstrate how to derive the in-
compressible Navier–Stokes Equations from the anisotropic linear 
axion model under the near horizon and non-relativistic limit. As 
showed in [39,45,46], the action of the Einstein–Dilaton–Axion the-
ory can be written as

S =
∫

d5x
√−g[ 1

2κ2
(R + 12) − 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2], (7)

where 2κ2 = 16πG5 is the five-dimensional gravitational coupling, 
φ and χ are the dilaton field and the axion field, respectively. Here 
we have set the cosmological constant scale L = 1. Then the equa-
tions of motion for the axion, the dilaton and the gravitational field 
can be presented respectively

∇μ(e2φ∇μχ) = 0, (8)

∇μ∇μφ − e2φ(∂χ)2 = 0, (9)

Rμν − ∂μφ∂νφ − e2φ∂μχ∂νχ + 4gμν = 0. (10)

Here we have used κ2 = 8πG5 = 1. We consider such spacetime 
geometry [39,45,46] preserving rotational invariance in the x–y
plane, which can be written as

ds2
5 = e− φ

2 [− f (r)B(r)dt2 + 2
√

B(r)drdt + r2dx2

+ r2dy2 + r2 H(r)dz2], (11)

where φ, B, H and f (r) ≡ r2 F (r) only depend on the radial coordi-
nate r. χ is a linear function, namely χ = az, where a is a constant. 
At the horizon of this geometry f (rh) should be vanishing, namely 
f (rh) = 0, which is equivalent to F (rh) = 0. H(r) is related to the 
dilaton field φ, namely H(r) = e−φ(r) . When H(r) = 1, this space-
time has spatial isotropy. Otherwise, it is anisotropic. The relevant 
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anisotropic solutions have appeared in [39,45,46]. Thus here we do 
not try to repeat it in detail, whereas mainly focus on the hydro-
dynamical behavior of the gravity. The hypersurface �c located by 
r = rc outside the horizon of this geometry can be naturally intro-
duced by

ds2
4 = − f (rc)B(rc)e− 1

2 φ(rc)dt2 + r2
c e− 1

2 φ(rc)dx2

+ r2
c e− 1

2 φ(rc)dy2 + r2
c H(rc)e− 1

2 φ(rc)dz2

= −dx02 + r2
c e− 1

2 φ(rc)dx2 + r2
c e− 1

2 φ(rc)dy2

+ r2
c H(rc)e− 1

2 φ(rc)dz2, (12)

where 
√

f (rc)B(rc)e− 1
2 φ(rc)t = x0. Obviously the hypersurface em-

bedded is intrinsic flat. To exhibit explicitly the non-relativistical 
behavior of dual hydrodynamics on this hypersurface, we further 
need to introduce a parameter λ by rescaling the time coordinate 
λx0 = τ . Thus the above induced metric can be rewritten as

ds2
p+1 = − 1

λ2
dτ 2 + r2

c e− 1
2 φ(rc)dx2 + r2

c e− 1
2 φ(rc)dy2

+ r2
c H(rc)e− 1

2 φ(rc)dz2. (13)

Later, one can see that both the non-relativistical limit and the 
near horizon limit will be implemented by identifying the parame-
ter λ with the location of the hypersurface, namely rc − rh = (αλ)2

such that taking λ → 0 means these limits can be achieved si-
multaneously. Taking λ → 0 limit implies that the hypersurface 
is highly accelerated, which is thought of as the large mean cur-
vature. It is easily checked that the background quantities of the 
components of extrinsic curvature defined on the hypersurface �c

have following forms in the coordinate (τ , xi)

K τ (B)
τ = e

1
4 φc [ f ′

c

2
√

fc
+

√
fc B ′

c

2Bc
−

√
fcφ

′
c

4
]

K τ (B)
i = 0

K 2(B)
2 = K 1(B)

1 = e
1
4 φc (

√
fc

rc
−

√
fcφ

′
c

4
)

K 3(B)
3 = e

1
4 φc (

√
fc

rc
−

√
fcφ

′
c

4
+

√
fc H ′

c

2Hc
)

K = e
1
4 φc [ f ′

c

2
√

fc
+

√
fc B ′

c

2Bc
+ 3

√
fc

rc
− √

fcφ
′
c +

√
fc H ′

c

2Hc
],

(14)

where the prime ′ denotes derivative with respect to r. Here, 
for the convenience, we have abbreviated the background terms, 
namely �(rc) ≡ �c , where �(rc) includes f (rc), φ(rc), B(rc) and 
H(rc) above. Furthermore, in order to describe definitely the per-
turbation effect of gravity, as appearing in [25], we still take the 
Brown–York stress tensor as fundamental variable, which is de-
fined as

ta
b = δa

b K − K a
b. (15)

In coordinate (τ , xi), we can further rewrite the components of 
extrinsic curvature and its trace in terms of their corresponding 
Brown–York tensors,

K τ
τ = t

3
− tτ τ , K τ

i = −tτ i,

K i
j = −ti

j + δi
j

t
, K = t

. (16)

3 3
Now we can start to investigate the hydrodynamical behavior of 
the gravity on the cutoff surface in the near horizon limit and non-
relativistic limit. Note that in contrast to the conventional pertur-
bation method that uses the metric expansion to solve the pertur-
bation Einstein equations, and then governs the Brown–York tensor 
dynamical behavior identified with the energy momentum tensor 
of hydrodynamics on hypersurface, here we take the Brown–York 
tensors as the fundamental variables and consider directly its fluc-
tuations on the cutoff surface, without solving the perturbation 
gravitational equations, while keeping the intrinsic induced met-
ric of the surface fixed. Thus we can expand their components in 
powers of λ as

tτ i = 0 + λtτ i
(1) + . . .

tτ τ = e
1
4 φc [ 3

rc

√
fc − 3

√
fcφ

′
c

4
+

√
fc H ′

c

2Hc
] + λtτ τ

(1) + . . .

ti
j = e

1
4 φc [ f ′

c

2
√

fc
+

√
fc B ′

c

2Bc
+ 2

√
fc

rc
− 3

√
fcφ

′
c

4
+

√
fc H ′

c

2Hc

− δi
3δ

3
j

√
fc H ′

c

2Hc
]δi

j + λti
j
(1) + . . .

t = 3e
1
4 φc [ f ′

c

2
√

fc
+

√
fc B ′

c

2Bc
+ 3

√
fc

rc
− √

fcφ
′
c +

√
fc H ′

c

2Hc
]

+ λt(1) + . . . , (17)

where the Latin alphabets i, j of the term δi
3δ

3
j

√
fc H ′

c
2Hc

inside the 
square brackets in the third line of the above equations runs as 
the Latin alphabets i, j outside the square brackets, but the former 
does not join in other behaviors such as contraction. To obtain the 
perturbation behavior of gravity in the near horizon limit, we need 
to expand the background terms of the above stress tensors around 
the horizon in powers of rc − rh identified with α2λ2.

fc = f ′
hα

2λ2 + f ′′
h

2
α4λ4 + . . .

Hc = Hh + H ′
hα

2λ2 + . . .

Bc = Bh + B ′
hα

2λ2 + . . .

φc = φh + φ′
hα

2λ2 + . . . (18)

one will see that this strategy unifying the non-relativistic limit 
and near horizon limit plays an essential role in deducing success-
fully the standard Navier–Stokes Equation. Now we consider the 
specific form of “Hamiltonian constraint” in Eq. (3), whose form is 
rewritten in terms of the components of Brown–York stress tensor

tτ τ tτ τ + tn
mtm

n − t2

3
− 2

λ2
γ mntτ mtτ n = −12 − 2Tμνnμnν (19)

Note that all the indices of the physical quantities on the hypersur-
face here are lowered or raised with γab and γ ab . Plugging Eq. (18)
and Eq. (17) into Eq. (19), we find that the leading term of the con-
straint at the order λ−2 vanishes automatically and the sub-leading 
one gives rise to

tτ (1)
τ = −2e− 1

4 φhγ (0)mntτ (1)
m tτ (1)

n − 3e
1
4 φh (

f ′
h

rh
− 3 f ′

h

4
φ′

h)

+ e− 1
4 φh (12 − a2e

7φh
2

r2
h

) (20)

where γ (0)mn ≡ γ mn(rh) and H(r) = e−φ(r) have been used. Now 
we turn to considering Petrov-like boundary condition on hyper-
surface. After choosing 3 + 2 Newman–Penrose-like vector fields,
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√
2� = ∂0 − n,

√
2k = −∂0 − n, m1 = e

1
4 φ

r
∂1, m2 = e

1
4 φ

r
∂2,

m3 = e
1
4 φ

r
√

H
∂3, (21)

the Petrov-like boundary condition (5) can be generally presented 
as

C0i0 j + C0i j(n) + C0 ji(n) + Ci(n) j(n) = 0 (22)

To obtain conveniently the dynamical behavior of this geometry, 
making use of Eq. (4) we can rewrite explicitly the condition in 
terms of Brown–York stress tensor as

tτ τ tk
j + 2

λ2
γ kitτ it

τ
j − tk

it
i

j + 2λ∂τ (
t

3
δk

j − tk
j) + (

t

3
)2δk

j

− 1

λ
γ ki(∂ jt

τ
i + ∂it

τ
j) − tτ τ (

t

3
)δk

j + Bk
j = 0, (23)

where

Bk
j ≡ γ kiγi

αγ j
β Rαβ − 1

3
(λ2δk

j Tττ + δk
j Tαβnαnβ

− 2λδk
j Tταnα). (24)

The details of the calculation can be found in Appendix A. Substi-
tuting Eq. (17) and Eq. (18) into the above equation (23), we find 
that the background as a leading term satisfies automatically the 
Petrov-like condition at the order of 1

λ2 :

f ′
h

4α2λ2
e

1
2 φh δk

j − f ′
h

4α2λ2
e

1
2 φh δk

j = 0, (25)

and the perturbations of the gravity as sub-leading terms at the 
order of λ0, which gives rise to

tk(1)

j = 2e− 1
4 φhγ (0)kitτ (1)

i tτ (1)
j

+ e
1
4 φh (

f ′
h

rh
− f ′

h

4
φ′

h − δk
3δ

3
j

f ′
h

2
φ′

h)δ
k

j + t(1)

3
δk

j

− e− 1
4 φhγ (0)ki(∂ jt

τ (1)
i + ∂it

τ (1)
j )

+ e− 1
4 φh (−4δk

j + a2e
7
2 φh

r2
h

δk3δ3
j). (26)

Here we have used 

√
f ′
h

α = 1. In intrinsic flat hypersurface, since 
Tμbnμ vanishes for choosing b = τ , i, the momentum constraint (2)
in terms of Brown–York tensor ta

b reduces to be

∂ata
b = 0. (27)

When b = τ , we can directly derive the incompressible condition 
from the above equation, which is

O (λ−1) : ∂kυ
k = 0. (28)

When b = j, utilizing Eq. (26), we can straightforwardly derive the 
standard Navier–Stokes equations,

∂τ υ j + υk∂kυ j − ν∂2υ j + ∂ j P⊥ = 0 ( j = 1,2), (29)

∂τ υ3 + υk∂kυ3 − ν∂2υ3 + ∂3 P‖ = 0 ( j = 3). (30)

Here we have defined the transverse and longitudinal pressures as

P⊥ = 2e− 1
4 φh [ t(1)

3
+ e

1
4 φh (

f ′
h

rh
− f ′

h

4
φ′

h) − 4e− 1
4 φh ], (31)

P‖ = 2e− 1
4 φh [ t(1)

3
+ e

1
4 φh (

f ′
h

rh
− 3 f ′

h

4
φ′

h) + e− 1
4 φh (

a2e
7
2 φh

r2
h

− 4)],
(32)
respectively. It is worth noting that, in the context of AdS/CFT, 
the background pressures in the dual fluid contain some impor-
tant background information in the bulk. The different pressures 
in the dual Navier–Stokes equations (29) and (30), in some sense, 
reversely indicate that the dual spacetime is anisotropic, which dis-
tinguishes from the situation with identical pressures that mean 
the dual spacetime is isotropic. In this sense, the background pres-
sures are non-trivial. However, the difference between the trans-
verse pressure P⊥ and the longitudinal one P‖ , as shown in 
Eqs. (31) and (32), is just a constant. Moreover, from Eqs. (31)
and (32), it is easy to find that the background pressures con-
tribute nothing to the dynamical behavior in the dual hydrody-
namics, since their spatial derivatives vanish automatically. As a 
consequence, we can drop the background pressures terms so that 
the usual Navier–Stokes equation can be still presented as

∂τυ j + υk∂kυ j − ν∂2υ j + ∂ j P = 0 ( j = 1,2,3), (33)

where the pressure P has been identified with 2e− 1
4 φh t(1)

3 . In ad-

dition, we have also identified tτ (1)
j = 1

2 e
1
4 φh υ j and the kinematic 

shear viscosity ν = e− 1
4 φh above. In particular, the ratio of dynam-

ical viscosity to entropy density is

η

s
= νρ

s
=

1
2 e

1
4 φh e− 1

4 φh

1
4G

= 2G = 1

4π
. (34)

Here we have used 8πG = 1, and the entropy density s = 1
4G . 

The above equation indicates that under the non-relativistic and 
near-horizon limit the dynamical viscosity of this dual fluid is still 
isotropic and saturates the KSS bound [36], even in the anisotropic 
holographic setup considered here.

4. Summary and discussions

In this paper we have generalized the previous works [24–26]
to the case in which the dynamical behavior of the Einstein–
Dilaton–Axion theory can be governed by the incompressible 
Navier–Stokes equations via imposing the Petrov-like boundary 
condition on hypersurface in the non-relativistic limit as well as 
in the near horizon limit, such that the holographic nature and the 
elegance of the Petrov-like condition have been further disclosed. 
Here requiring that the Petrov-like condition holds on the cutoff 
surface, while keeping the induce metric on this surface fixed, we 
have demonstrated that in contrast with the Navier–Stokes equa-
tion with unit kinematic shear viscosity in the previous works, the 
kinematic shear viscosity of such fluid equation in our scenario 
is related to the value of the dilaton field on the horizon. How-
ever, the ratio of dynamical shear viscosity to entropy density is 
still the constant 1

4π , although the anisotropic effect has been con-
sidered. This likely means that such boundary condition under the 
large mean curvature limit sustains the KSS bound. In addition, the 
anisotropic background spacetime gives rise to the anisotropy of 
the background pressures, which distinguishes from the isotropic 
case that leads to the same background pressure. The difference 
of dual hydrodynamic pressures between the transversal and the 
longitudinal to the anisotropic direction is only constant which is 
given by the gradient of the axion field and the relevant values of 
the dilaton field on the horizon. Since the spatial derivatives of the 
background pressure terms vanish automatically, they do not affect 
the dynamical effect of such dual fluid. As a result, we can ignore 
these constant pressure terms and redefine the pressure in dual 
hydrodynamics such that the usual Navier–Stokes equation can be 
still obtained.
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In standard approaches in AdS/CFT, the (dynamical) shear vis-
cosity of the boundary dual fluid in anisotropic setups gener-
ally becomes a symmetric tensor with different eigenvalues in 
anisotropic directions, which violates the KSS bound in certain di-
rections [37,41]. Our result for the horizon fluid is more like that 
considered in [47,48], where the ratio of dynamical shear viscos-
ity to entropy density is always 1

4π in spite of the anisotropy of 
the holographic setup. Nevertheless, a deep understanding of the 
relationship between these formalisms is still lacking.

On the other hand, it should be an interesting problem that 
adopting the traditional non-relativistic long-wavelength limit, 
how about the hydrodynamic behaviors of gravity at finite cut-
off surfaces and the corresponding transport coefficients in such 
anisotropic systems. The systems at cutoff surfaces can interpolate 
between the horizon fluid and the boundary CFT, which is then 
related to the understanding of the different results of shear vis-
cosities mentioned above. This aspect is left for future works.
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Appendix A

In this Appendix we need to present that the Ricci tensor and 
the momentum energy tensor in bulk are how to contribute the 
Petrov-like condition in detail. From the variation of the action (7), 
the momentum energy tensor can be given by

Tμν = ∂μφ∂νφ − 1

2
gμν gαβ∂αφ∂βφ + e2φ∂μχ∂νχ

− 1

2
e2φ gμν gαβ∂αχ∂βχ, (35)

where χ is a linear Axion field, namely χ = az and a is constant. 
Using the above equation, the all components of this tensor can be 
straightforwardly calculated as

Ttt = −[1

2
gtt grr(∂rφ)2 + 1

2
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], (36)

Ttr = −[1
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Tti = 0, (38)

Trr = (∂rφ)2, (39)

Tri = 0, (40)
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T ≡ gμν Tμν = −[3

2
grr(∂rφ)2 + 3

2
e
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]. (42)

The Einstein equation (1) in the dilaton–axion model can be 
rewritten as

Rμν = −T − 12

3
gμν + Tμν. (43)

Imposing the above equations, Eq. (24) can be presented as

Bk
j = −4δk

j + e
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rc Hc
Here we have used the result

Tτμnμ = 0. (45)
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