436 research outputs found

    Zonally Robust Decentralized Optimization for Global Energy Interconnection:Case Study on Northeast Asian Countries

    Get PDF

    3,3′-Dibromo-1,1′-[ethyl­enedioxy­bis(nitrilo­methyl­idyne)]dibenzene

    Get PDF
    In the centrosymmetric title compound, C16H14Br2N2O2, the intra­molecular interplanar distance between the parallel benzene rings is 1.305 (3) Å, while the inter­molecular interplanar distance (between neighbouring mol­ecules) is 3.463 (3) Å, exhibiting obvious strong inter­molecular π–π stacking inter­actions

    (S)-(+)-4-(Oxiran-2-ylmeth­oxy)-9H-carbazole

    Get PDF
    In the title compound, C15H13NO2, all atoms of the carbazole group are coplanar (r.m.s. deviation = 0.005 Å), and the dihedral angle between this plane and C—O—C plane of oxane group is 57.1 (4)°. The crystal packing is stabilized by an N—H⋯O hydrogen bond, resulting in infinite supra­molecular chains along [001]

    Nanotube ferroelectric tunnel junctions with giant tunneling electroresistance ratio

    Full text link
    Low-dimensional ferroelectric tunnel junctions are appealing for the realization of nanoscale nonvolatile memory devices due to their inherent advantage of device miniaturization. Those based on current mechanisms still have restrictions including low tunneling electroresistance (TER) effects and complex heterostructures. Here, we introduce an entirely new TER mechanism to construct the nanotube ferroelectric tunnel junction with ferroelectric nanotubes as the tunneling region. When rolling a ferroelectric monolayer into a nanotube, due to the coexistence of its intrinsic ferroelectric polarization with the flexoelectric polarization induced by bending, there occurs metal-insulator transition depending on radiative polarization states. For the pristine monolayer, its out-of-plane polarization is tunable by an in-plane electric field, the conducting states of the ferroelectric nanotube can thus be tuned between metallic and insulating via axial electric means. Using {\alpha}-In2Se3 as an example, our first-principles density functional theory calculations and nonequilibrium Green's function formalism confirm the feasibility of the TER mechanism and indicate an ultrahigh TER ratio exceeding 9.9*10^10% of the proposed nanotube ferroelectric tunnel junctions. Our findings provide a promising approach based on simple homogeneous structures for high density ferroelectric microelectronic devices with excellent ON/OFF performance.Comment: 15 pages, 5 figure

    Chitosan Grafted With β-Cyclodextrin: Synthesis, Characterization, Antimicrobial Activity, and Role as Absorbefacient and Solubilizer

    Get PDF
    We synthesized chitosan grafted with β-cyclodextrin (CD-g-CS) from mono-6-deoxy-6-(p-toluenesulfonyl)-β-cyclodextrin and chitosan. Two different amounts of immobilized β-cyclodextrin (β-CD) on CD-g-CS (QCD: 0.643 × 103 and 0.6 × 102 μmol/g) were investigated. The results showed that the amino contents of CD-g-CS with QCD = 0.643 × 103 and 0.6 × 102 μmol/g were 6.34 ± 0.072 and 9.41 ± 0.055%, respectively. Agar diffusion bioassay revealed that CD-g-CS (QCD = 0.6 × 102 μmol/g) was more active against Staphylococcus xylosus and Escherichia coli than CD-g-CS (QCD = 0.643 × 103 μmol/g). Cell membrane integrity tests and scanning electron microscopy observation revealed that the antimicrobial activity of CD-g-CS was attributed to membrane disruption and cell lysis. Uptake tests showed that CD-g-CS promoted the uptake of doxorubicin hydrochloride by S. xylosus, particularly for CD-g-CS with QCD = 0.6 × 102 μmol/g, and the effect was concentration dependent. CD-g-CS (QCD = 0.6 × 102 and 0.643 × 103 μmol/g) also improved the aqueous solubilities of sulfadiazine, sulfamonomethoxine, and sulfamethoxazole. These findings provide a clear understanding of CD-g-CS and are of great importance for reducing the dosage of antibiotics and antibiotic residues in animal-derived foods. The results also provide a reliable, direct, and scientific theoretical basis for its wide application in the livestock industry

    3,3′-Dibromo-1,1′-[(propane-1,3-diyl­dioxy)­bis(nitrilo­methyl­idyne)]dibenzene

    Get PDF
    The mol­ecule of the title compound, C17H16Br2N2O2, lies on a twofold axis that passes through the middle atom of the three-atom trimethyl­ene unit. The two aromatic rings are aligned at an angle of 76.02 (4)°

    Toolpath interpolation and smoothing for computer numerical control machining of freeform surfaces : a review

    Get PDF
    Driven by the ever increasing demand in function integration, more and more next generation high value-added products, such as head-up displays, solar concentrators and intra-ocular-lens, etc., are designed to possess freeform (i.e., non-rotational symmetric) surfaces. The toolpath, composed of high density of short linear and circular segments, is generally used in computer numerical control (CNC) systems to machine those products. However, the discontinuity between toolpath segments leads to high-frequency fluctuation of feedrate and acceleration, which will decrease the machining efficiency and product surface finish. Driven by the ever-increasing need for high-speed high-precision machining of those products, many novel toolpath interpolation and smoothing approaches have been proposed in both academia and industry, aiming to alleviate the issues caused by the conventional toolpath representation and interpolation methods. This paper provides a comprehensive review of the state-of-the-art toolpath interpolation and smoothing approaches with systematic classifications. The advantages and disadvantages of these approaches are discussed. Possible future research directions are also offered
    corecore