1,086 research outputs found

    Non-Additive Effects on Decomposition from Mixing Litter of the Invasive Mikania micrantha H.B.K. with Native Plants

    Get PDF
    A common hypothesis to explain the effect of litter mixing is based on the difference in litter N content between mixed species. Although many studies have shown that litter of invasive non-native plants typically has higher N content than that of native plants in the communities they invade, there has been surprisingly little study of mixing effects during plant invasions. We address this question in south China where Mikania micrantha H.B.K., a non-native vine, with high litter N content, has invaded many forested ecosystems. We were specifically interested in whether this invader accelerated decomposition and how the strength of the litter mixing effect changes with the degree of invasion and over time during litter decomposition. Using litterbags, we evaluated the effect of mixing litter of M. micrantha with the litter of 7 native resident plants, at 3 ratios: M1 (1:4, = exotic:native litter), M2 (1:1) and M3 (4:1, = exotic:native litter) over three incubation periods. We compared mixed litter with unmixed litter of the native species to identify if a non-additive effect of mixing litter existed. We found that there were positive significant non-additive effects of litter mixing on both mass loss and nutrient release. These effects changed with native species identity, mixture ratio and decay times. Overall the greatest accelerations of mixture decay and N release tended to be in the highest degree of invasion (mix ratio M3) and during the middle and final measured stages of decomposition. Contrary to expectations, the initial difference in litter N did not explain species differences in the effect of mixing but overall it appears that invasion by M. micrantha is accelerating the decomposition of native species litter. This effect on a fundamental ecosystem process could contribute to higher rates of nutrient turnover in invaded ecosystems. © 2013 Chen et al

    A feasibility study of multi-electrode high-purity germanium detector for Ge-76 neutrinoless double beta decay searching

    Full text link
    Experiments to search for neutrinoless double-beta (0{\nu}\b{eta}\b{eta}) decay of 76Ge using a high-purity germanium (HPGe) detector rely heavily on background suppression technologies to enhance their sensitivities. In this work, we proposed a pulse-shape analysis method based on a neural network (NN) and a light gradient boosting machine (lightGBM; LGB) to discriminate single-electron (background) and double-electrons (0{\nu}\b{eta}\b{eta} signal) events in a multi-electrode HPGe detector. In this paper, we describe a multi-electrode HPGe detector system, a data-processing system, and pulse-shape simulation procedures. We built a fully connected (FC) neural network and an LGB model to classify the single- and double-electron events. The FC network is trained with simulated single- and double-electron-induced pulses and tested in an independent dataset generated by the pulse-shape simulation. The discrimination efficiency of the FC neural network in the test set for the 0{\nu}\b{eta}\b{eta} double-electron events signal was 77.4%, the precision was 57.7%, and the training time was 430 min. The discrimination efficiency of LGB model was 73.1%, the precision was 64.0%, and the training time was 1.5 min. This study demonstrated that it is feasible to realize single- and double-electron discrimination on multi-electrode HPGe detectors using an FC neural network and LGB model. These results can be used as a reference for future 76Ge 0{\nu}\b{eta}\b{eta} experiments.Comment: 16 pages,12 figure

    A Fatty Acid Glycoside from a Marine-Derived Fungus Isolated from Mangrove Plant Scyphiphora hydrophyllacea

    Get PDF
    To study the antimicrobial components from the endophytic fungus A1 of mangrove plant Scyphiphora hydrophyllacea Gaertn. F., a new fatty acid glucoside was isolated by column chromatography from the broth of A1, and its structure was identified as R-3-hydroxyundecanoic acid methylester-3-O-α-l-rhamnopyranoside (1) by spectroscopic methods including 1D and 2D NMR (HMQC, 1H-1H COSY and HMBC) and chemical methods. Antimicrobial assay showed compound 1 possessed modest inhibitory effect on Saphylococcus aureus and methicillin-resistant S. aureus (MRSA) using the filter paper disc agar diffusion method

    Long-term outcomes of anatomic vs. non-anatomic resection in intrahepatic cholangiocarcinoma with hepatolithiasis: A multicenter retrospective study

    Get PDF
    BackgroundThe benefits of anatomic resection (AR) vs. non-anatomic resection (NAR) in patients with primary intrahepatic cholangiocarcinoma (ICC) with hepatolithiasis (HICC) are unclear. This study aimed to compare the long-term outcomes of AR vs. NAR in patients with HICC.MethodsA total of 147 consecutive patients with HICC who underwent R0 hepatectomy were included. Overall survival (OS) and recurrence-free survival (RFS) following AR vs. NARs were compared using a 1:1 propensity score matching (PSM) analysis. A subgroup analysis was also conducted according to whether there are lymph node metastases (LNM).ResultsIn a multivariate analysis, CA 19-9 (>39 U/L), microvascular invasion, LNM, and NAR were independent risk factors for poor RFS and OS rates, whereas multiple tumors were independent risk factors for OS. AR had better 1-, 3-, and 5-year RFS and OS rates than NAR (OS: 78.7, 58.9, and 28.5%, respectively, vs. 61.2, 25.4, and 8.8%, respectively; RFS: 59.5, 36.5, and 20.5%, respectively, vs. 38.2, 12.1, and 6.9%, respectively). After PSM, 100 patients were enrolled. The NAR group also had significantly poorer OS and RFS (OS: 0.016; RFS: p = 0.010) than the AR group. The subgroup analysis demonstrated that in HICC without LNM, OS and RFS were significantly poorer in the NAR group than the AR group, while no significant differences were observed in HICC with LNM before or after PSM.ConclusionAnatomic resection was associated with better long-term survival outcomes than NAR in patients with HICC, except for patients with LNM

    Superconductivity in LaFeAs1−x_{1-x}Px_{x}O: effect of chemical pressures and bond covalency

    Get PDF
    We report the realization of superconductivity by an isovalent doping with phosphorus in LaFeAsO. X-ray diffraction shows that, with the partial substitution of P for As, the Fe2_2As2_2 layers are squeezed while the La2_2O2_2 layers are stretched along the c-axis. Electrical resistance and magnetization measurements show emergence of bulk superconductivity at ∼\sim10 K for the optimally-doped LaFeAs1−x_{1-x}Px_{x}O (x=0.25∼0.3x=0.25\sim0.3). The upper critical fields at zero temperature is estimated to be 27 T, much higher than that of the LaFePO superconductor. The occurrence of superconductivity is discussed in terms of chemical pressures and bond covalency.Comment: 5 pages, 6 figures, more data presente
    • …
    corecore