3,399 research outputs found

    On Gaussian Comparison Inequality and Its Application to Spectral Analysis of Large Random Matrices

    Full text link
    Recently, Chernozhukov, Chetverikov, and Kato [Ann. Statist. 42 (2014) 1564--1597] developed a new Gaussian comparison inequality for approximating the suprema of empirical processes. This paper exploits this technique to devise sharp inference on spectra of large random matrices. In particular, we show that two long-standing problems in random matrix theory can be solved: (i) simple bootstrap inference on sample eigenvalues when true eigenvalues are tied; (ii) conducting two-sample Roy's covariance test in high dimensions. To establish the asymptotic results, a generalized ϵ\epsilon-net argument regarding the matrix rescaled spectral norm and several new empirical process bounds are developed and of independent interest.Comment: to appear in Bernoull

    A lightweight intrusion alert fusion system

    Full text link
    In this paper, we present some practical experience on implementing an alert fusion mechanism from our project. After investigation on most of the existing alert fusion systems, we found the current body of work alternatively weighed down in the mire of insecure design or rarely deployed because of their complexity. As confirmed by our experimental analysis, unsuitable mechanisms could easily be submerged by an abundance of useless alerts. Even with the use of methods that achieve a high fusion rate and low false positives, attack is also possible. To find the solution, we carried out analysis on a series of alerts generated by well-known datasets as well as realistic alerts from the Australian Honey-Pot. One important finding is that one alert has more than an 85% chance of being fused in the following 5 alerts. Of particular importance is our design of a novel lightweight Cache-based Alert Fusion Scheme, called CAFS. CAFS has the capacity to not only reduce the quantity of useless alerts generated by IDS (Intrusion Detection System), but also enhance the accuracy of alerts, therefore greatly reducing the cost of fusion processing. We also present reasonable and practical specifications for the target-oriented fusion policy that provides a quality guarantee on alert fusion, and as a result seamlessly satisfies the process of successive correlation. Our experimental results showed that the CAFS easily attained the desired level of survivable, inescapable alert fusion design. Furthermore, as a lightweight scheme, CAFS can easily be deployed and excel in a large amount of alert fusions, which go towards improving the usability of system resources. To the best of our knowledge, our work is a novel exploration in addressing these problems from a survivable, inescapable and deployable point of view

    CALD : surviving various application-layer DDoS attacks that mimic flash crowd

    Full text link
    Distributed denial of service (DDoS) attack is a continuous critical threat to the Internet. Derived from the low layers, new application-layer-based DDoS attacks utilizing legitimate HTTP requests to overwhelm victim resources are more undetectable. The case may be more serious when suchattacks mimic or occur during the flash crowd event of a popular Website. In this paper, we present the design and implementation of CALD, an architectural extension to protect Web servers against various DDoS attacks that masquerade as flash crowds. CALD provides real-time detection using mess tests but is different from other systems that use resembling methods. First, CALD uses a front-end sensor to monitor thetraffic that may contain various DDoS attacks or flash crowds. Intense pulse in the traffic means possible existence of anomalies because this is the basic property of DDoS attacks and flash crowds. Once abnormal traffic is identified, the sensor sends ATTENTION signal to activate the attack detection module. Second, CALD dynamically records the average frequency of each source IP and check the total mess extent. Theoretically, the mess extent of DDoS attacks is larger than the one of flash crowds. Thus, with some parameters from the attack detection module, the filter is capable of letting the legitimate requests through but the attack traffic stopped. Third, CALD may divide the security modules away from the Web servers. As a result, it keeps maximum performance on the kernel web services, regardless of the harassment from DDoS. In the experiments, the records from www.sina.com and www.taobao.com have proved the value of CALD

    Influence of Tropical Cyclones in the Western North Pacific

    Get PDF
    The Western North Pacific (WNP) is the most favorable area in the world for the generation of tropical cyclones (TCs). As the most intense weather system, TCs play an important role in the change of ocean environment in the WNP. Based on many investigations published in the literature, we obtained a collective and systematic understanding of the influence of TCs on ocean components in the WNP, including sea temperature, ocean currents, mesoscale eddies, storm surges, phytoplankton (indicated by chlorophyll a). Some ocean responses to TCs are unique in the WNP because of the existence of the Kuroshio and special geographical configurations such as the South China Sea

    Analysis of Stress State of Bolts under Different Anchorage Qualities

    Get PDF
    A series of pull-out tests were conducted in order to study the stress states of bolts under different anchorage qualities and to simulate the influence of quality defects in empty-slurry and low-strength mortar anchorage in actual engineering. The tests mainly investigated strain characteristics at different positions of the bolts and the effects of strains at the same positions under different anchorage conditions. The research led to the following conclusions: (1) under ultimate bearing capacity, the strain values decayed the fastest along the length of the bolt in the full-length anchorage, the strain values decayed the slowest in the empty-slurry and low-strength mortar anchorage, and the decaying speed of strains in the empty-slurry mortar anchorage was between that of the above two kinds of anchorages; (2) at almost 50% of the ultimate bearing capacity, the strain values were slightly different between the empty-slurry and low-strength mortar anchorage and the empty-slurry anchorage. Obvious differences in strain values occurred when the bolts were continued to be loaded. The strain values of the full-length anchorage bolts were different from those of the other two kinds of anchorages; (3) from the analysis of stress variation characteristics, the safety reserve was the highest for the full-length anchorage under the condition of ultimate bearing capacity, followed by the empty-slurry mortar anchorage, while the safety reserve was the lowest for the empty-slurry and low-strength mortar anchorage. However, in terms of uniformity of force and utilization of the material, the result was reverse

    Quantum phase transitions in a two-dimensional quantum XYX model: Ground-state fidelity and entanglement

    Full text link
    A systematic analysis is performed for quantum phase transitions in a two-dimensional anisotropic spin 1/2 anti-ferromagnetic XYX model in an external magnetic field. With the help of an innovative tensor network algorithm, we compute the fidelity per lattice site to demonstrate that the field-induced quantum phase transition is unambiguously characterized by a pinch point on the fidelity surface, marking a continuous phase transition. We also compute an entanglement estimator, defined as a ratio between the one-tangle and the sum of squared concurrences, to identify both the factorizing field and the critical point, resulting in a quantitative agreement with quantum Monte Carlo simulation. In addition, the local order parameter is "derived" from the tensor network representation of the system's ground state wave functions.Comment: 4+ pages, 3 figure
    • …
    corecore