7,768 research outputs found

    Bosonization of quantum sine-Gordon field with a boundary

    Get PDF
    Boundary operators and boundary ground states in sine-Gordon model with a fixed boundary condition are studied using bosonization and q-deformed oscillators.We also obtain the form-factors of this model.Comment: Latex 25page

    Detection of small single-cycle signals by stochastic resonance using a bistable superconducting quantum interference device

    Get PDF
    We propose and experimentally demonstrate detecting small single-cycle and few-cycle signals by using the symmetric double-well potential of a radio frequency superconducting quantum interference device (rf-SQUID). We show that the response of this bistable system to single- and few-cycle signals has a non-monotonic dependence on the noise strength. The response, measured by the probability of transition from initial potential well to the opposite one, becomes maximum when the noise-induced transition rate between the two stable states of the rf-SQUID is comparable to the signal frequency. Comparison to numerical simulations shows that the phenomenon is a manifestation of stochastic resonance.Comment: 5 pages 3 figure

    The Design of Nonlinear Chirp Based on the DSP Builder Technique

    Full text link
    This paper, by analyzing the function Chirp, studies the software design and realization of the function. It offers a design plan based on the nonlinear Chirp signal of DSP Builder technique and designs the signal generator of the nonlinear Chirp based on the design flow of Matlab/Simulink/DSP Builder/Quartusll. It also conducts simulation verification using the development software Matlab/Simulink and Quartusll, proving that the design can well realize the signal source Chirp. The experiment proves that the DSP Builder technique can modify the starting frequency, bandwidth and the frequency resolution of linear frequency modulation signals by changing the programming parameters. The method is proved to be simple in designing, convenient in modification, low in cost and it doesn’t involve any programming; therefore, it is easy to realize

    Bosonization Theory of Excitons in One-dimensional Narrow Gap Semiconductors

    Full text link
    Excitons in one-dimensional narrow gap semiconductors of anti-crossing quantum Hall edge states are investigated using a bosonization method. The excitonic states are studied by mapping the problem into a non-integrable sine-Gordon type model. We also find that many-body interactions lead to a strong enhancement of the band gap. We have estimated when an exciton instability may occur.Comment: 4pages, 1 figure, to appear in Phys. Rev. B Brief Report
    • …
    corecore