
Detection of small single-cycle signals by stochastic resonance using a bistable
superconducting quantum interference device
Guozhu Sun, Jiquan Zhai, Xueda Wen, Yang Yu, Lin Kang, Weiwei Xu, Jian Chen, Peiheng Wu, and Siyuan Han 
 
Citation: Applied Physics Letters 106, 172602 (2015); doi: 10.1063/1.4919539 
View online: http://dx.doi.org/10.1063/1.4919539 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/106/17?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Note: Low temperature superconductor superconducting quantum interference device system with wide pickup
coil for detecting small metallic particles 
Rev. Sci. Instrum. 83, 076108 (2012); 10.1063/1.4739311 
 
Characterization of tumors using high- T c superconducting quantum interference device-detected nuclear
magnetic resonance and imaging 
Appl. Phys. Lett. 97, 263701 (2010); 10.1063/1.3530124 
 
Magneto-optical detection of single flux quantum signals in superconducting quantum interference device 
Appl. Phys. Lett. 95, 192503 (2009); 10.1063/1.3262957 
 
Performance of nano superconducting quantum interference devices for small spin cluster detection 
J. Appl. Phys. 106, 023925 (2009); 10.1063/1.3183959 
 
Switching device for the superconducting phase transition measurements of thin W films using a single
superconducting quantum interference device 
Rev. Sci. Instrum. 70, 2815 (1999); 10.1063/1.1149800 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  129.237.46.8 On: Mon, 05 Dec 2016

17:22:17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213419918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/517973609/x01/AIP-PT/LakeShore_APLArticleDL_113016/Physics-Today_1640x440_8600_draft01.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Guozhu+Sun&option1=author
http://scitation.aip.org/search?value1=Jiquan+Zhai&option1=author
http://scitation.aip.org/search?value1=Xueda+Wen&option1=author
http://scitation.aip.org/search?value1=Yang+Yu&option1=author
http://scitation.aip.org/search?value1=Lin+Kang&option1=author
http://scitation.aip.org/search?value1=Weiwei+Xu&option1=author
http://scitation.aip.org/search?value1=Jian+Chen&option1=author
http://scitation.aip.org/search?value1=Peiheng+Wu&option1=author
http://scitation.aip.org/search?value1=Siyuan+Han&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4919539
http://scitation.aip.org/content/aip/journal/apl/106/17?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/rsi/83/7/10.1063/1.4739311?ver=pdfcov
http://scitation.aip.org/content/aip/journal/rsi/83/7/10.1063/1.4739311?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/97/26/10.1063/1.3530124?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/97/26/10.1063/1.3530124?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/95/19/10.1063/1.3262957?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/106/2/10.1063/1.3183959?ver=pdfcov
http://scitation.aip.org/content/aip/journal/rsi/70/6/10.1063/1.1149800?ver=pdfcov
http://scitation.aip.org/content/aip/journal/rsi/70/6/10.1063/1.1149800?ver=pdfcov


Detection of small single-cycle signals by stochastic resonance using
a bistable superconducting quantum interference device

Guozhu Sun,1,2,a) Jiquan Zhai,1,2 Xueda Wen,3 Yang Yu,4,2 Lin Kang,1,2 Weiwei Xu,1,2

Jian Chen,1 Peiheng Wu,1,2 and Siyuan Han5

1National Laboratory of Solid State Microstructures and Research Institute of Superconductor Electronics,
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and
Technology of China, Hefei, Anhui 230026, China
3Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
4School of Physics, Nanjing University, Nanjing 210093, China
5Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA

(Received 3 February 2015; accepted 20 April 2015; published online 29 April 2015)

We propose and experimentally demonstrate detecting small single-cycle and few-cycle signals by

using the symmetric double-well potential of a radio frequency superconducting quantum interfer-

ence device (rf-SQUID). We show that the response of this bistable system to single- and few-

cycle signals has a non-monotonic dependence on the noise strength. The response, measured by

the probability of transition from initial potential well to the opposite one, becomes maximum

when the noise-induced transition rate between the two stable states of the rf-SQUID is comparable

to the signal frequency. Comparison to numerical simulations shows that the phenomenon is a man-

ifestation of stochastic resonance. VC 2015 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4919539]

It is a long-held belief that noise is detrimental or even

destructive to detecting signals which often appear as weak

periodic modulations. However, during the last 35 years, the-

oretical and experimental investigations have shown that in

nonlinear systems a proper amount of noise can actually

increase the signal-to-noise ratio (SNR) and thus become

beneficial for signal detection. This interesting phenomenon

is named as stochastic resonance (SR).1–4 For example, sup-

pose that a particle is moving in a periodically perturbed

symmetric double-well potential under the influence of a

Gaussian-white noise such as thermal fluctuation. Then SNR

of the power spectral density of the particle’s trajectory dis-

plays a broad maximum when the rate of inter-well transi-

tions, which depends on noise strength exponentially, is

comparable to the frequency of periodic signal. This is the

essence of SR.

Due to its simplicity and ubiquity of the underlying

mechanism, SR has attracted much interest from physicists,

chemists, biologists, and electronic engineers.1–11 It has also

been observed in Josephson junction-based systems,12–16

which have recently attracted much interest and been applied

in many fields such as quantum information.17–19 However,

SR has been only investigated for periodic signals that last

many cycles. Namely, only the steady-state properties of the

noisy periodically driven systems have been studied. On the

other hand, in a variety of science and engineering disci-

plines, it is a significant challenge to detect small signals

which not only last a few cycles but also are buried in noise.

Up to this point, whether SR can also enhance single-cycle

signal detection remains an open question.

In this letter, we report on the observation of SR in a ra-

dio frequency superconducting quantum interference devi-

ce’s (rf-SQUID’s)20,21 response to weak single-cycle and

few-cycle signals by measuring the inter-well transition

probability as a function of the noise strength D and the sig-

nal frequency fs systematically. Our experimental and nu-

merical results show that one can distill small single-cycle

and few-cycle signals from noisy environment by using

bistable systems configured as binary threshold detectors.

The maximum sensitivity is achieved at the value of D that

matches well with the position of SR. We also show that the

sensitivity of detecting single-cycle signals is similar to that

of detecting many-cycle signals.

In our experiment, we use an rf-SQUID, which is a

superconducting loop of inductance L interrupted by a

Josephson junction of critical current Ic, as our bistable de-

tector. An optical micrograph of the sample is shown in the

inset of Fig. 1. The Josephson junction is made of Nb/AlOx/

Nb on a silicon substrate. The critical current Ic and the ca-

pacitance C of the junction are approximately 0.80 lA and

90 fF, respectively. The inductance L of the Nb supercon-

ducting loop is approximately 1053 pH. The potential energy

of the rf-SQUID is given by

U Uð Þ ¼ U� Ueð Þ2

2L
� EJ cos

2pU
U0

� �
; (1)

where U0 is the flux quantum and EJ ¼ IcU0=2p is the

Josephson coupling energy of the junction. The shape of the

double well potential can be controlled in situ by a flux bias

Ue applied via a flux bias line coupled inductively to the rf-

SQUID. In particular, at Ue ¼ U0=2 the SQUID has a sym-

metric double-well potential separated by a barrier DU0 asa)Electronic mail: gzsun@nju.edu.cn

0003-6951/2015/106(17)/172602/4 VC Author(s) 2015106, 172602-1
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shown in Fig. 1. For the SQUID studied here, DU0=kB ’
12:3 K, where kB is the Boltzmann’s constant. The dynamics

of the rf-SQUID, identical to that of a fictitious flux particle

of mass C moving in the potential UðUÞ with a friction coef-

ficient R�1, is governed by the corresponding Langevin

equation

C
d2U
dt2
þ 1

R

dU
dt
¼ � dU

dU
þ In tð Þ: (2)

Here, In is the noise current and R is the damping resistance

of the Josephson junction. Without externally injected noise,

In and R are related by the fluctuation-dissipation theorem

hInðtÞInðt0Þi ¼ 2kBT
R dðt� t0Þ in thermal equilibrium, where T

is temperature. The small oscillation frequency of the system

around the bottom of the potential wells is denoted as x0. At

T � �hx0=kB, where �h is the Planck constant, thermal activa-

tion causes inter-well hopping with the characteristic transi-

tion rate given by22

C0 ¼
x0

2p
at exp �DU0

kBT

� �
; (3)

where at is a damping dependent constant of order of unity.

When transitions are dominated by an external noise source

of strength D� kBT, the denominator in the exponent of Eq.

(3) is replaced by D which is proportional to the square of

the rms noise current, I2
n;rms, applied to the system. For the

sake of simplicity, hereafter we set kB¼ 1 so that D is

measured in units of Kelvin. Note that because the potential

is symmetric, C0 is identical for left-to-right and right-to-left

transitions.

Because all key parameters of the rf-SQUID potential

and its control circuit can be accurately determined, the

double-well potential of the rf-SQUID is an ideal system for

investigating SR12–14 and noise-enhanced detection of

single-cycle and few-cycle signals. In our experiment, the

Gaussian-white noise has a bandwidth of about 9 MHz,

which is generated by an arbitrary waveform generator. The

signal and noise are applied to the rf-SQUID through a sec-

ond flux bias line with higher bandwidth (up to 18 GHz). The

relationship between D and I2
n;rms is calibrated by measuring

C0 versus I2
n;rms and comparing the result to Eq. (3).

As shown schematically in Fig. 1, each measurement

cycle begins by ramping up the quasi-static flux bias from 0

to U0=2 to prepare the flux particle in the left side of the

symmetric double-well potential. This is followed by apply-

ing a single-cycle modulation of flux bias that causes the

potential barrier to oscillate as DU0 þ e0 sinð2pfstÞ, where e0

is proportional to the amplitude of the flux modulation which

is kept at e0 ¼ 0:07DU0 ’ 0:86 K in the experiment. The

position of the flux particle is measured by using a dc-

SQUID switching magnetometer inductively coupled to the

rf-SQUID, either after a single signal cycle or a fixed dura-

tion of signal time as discussed later, as a function of 0.5 K

� D � 2:0 K and 10 kHz � fs � 200 kHz. The quasi-static

flux bias is then ramped down to zero to complete the mea-

surement cycle. To obtain the fractional population in the

right well qR, the procedure is repeated 2000 times at each

value of D and fs. All data are measured at T � 20 mK� D
in a cryogen-free dilution fridge carefully shielded from the

environmental electromagnetic interference so that the

effects of thermal fluctuation and extra noise on the experi-

ment are negligible.

We first measure qR as a function of the noise strength

D by using single-cycle signals e6ðtÞ ¼ 6e0 sinð2pfstÞ as

depicted in Fig. 1, where the signal frequency fs¼ 10 kHz.

The result is shown in Fig. 2(a). The noise strength D is var-

ied between 0.5 K and 2.0 K. Therefore, transitions between

the two potential wells at e0 ¼ 0 (no signal) are noise acti-

vated. Note that without the noise, eðtÞ alone would be too

small to cause transitions between the potential wells

because ðDU0 � e0Þ=T > 500. Hence, D> 0.5 K is required

for the flux particle to hop from one well to the other within

FIG. 1. A time profile of manipulation and measurement. Potential wells at

several key moments are also plotted. The inset shows an optical micrograph

of a Nb/AlOx/Nb rf-SQUID with an inductively coupled dc-SQUID and flux

bias lines.

FIG. 2. (a) Measured qRðDÞ with a single-cycle sinusoidal signal. fs¼ 10 kHz. Data indicated by the blue squares and red circles correspond to eþðtÞ and e�ðtÞ,
respectively, which agree with the numerical calculation (black lines). The inset shows the linear dependence of ln ðC0Þ on 1=D. (b) qR as a function of 1=D
and fs with single-cycle sinusoidal signals eþðtÞ ¼ e0 sinð2pfstÞ. As shown in the inset, when qR reaches a maximum, C0ðDmÞ � 2fs, where Dm denotes the

noise strength corresponding to maximum qR. These results are consistent with the theoretical hypothesis of SR. (c) Numerical calculation of qR as a function

of 1=D and fs with single-cycle sinusoidal signals eþðtÞ ¼ e0 sinð2pfstÞ, which agree well with the experimental data.
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the duration of each signal cycle. On the other hand, at e0 ¼
0 the transition rate C0 grows exponentially from approxi-

mately 1/s at D¼ 0.5 K to greater than 107/s at D¼ 2.0 K, as

shown in the inset of Fig. 2(a). It can be seen that for

D � 0:7 K the population of the right well qR is negligible at

t ¼ s ¼ 1=fs. The data indicated by the blue squares in Fig.

2(a) are taken with eþðtÞ which show that as D is increased

from 0.7 K, qR rises rapidly to reach maximum when

C0ðDmÞ � 2fs, where Dm denotes the noise strength corre-

sponding to the maximum qR. When D > Dm, the probability

of hopping back from the right well to the left well increases

rapidly, causing qRðDÞ to decrease. Finally, when D� e0

the population of each potential well is equalized to 50%.

SR has two most prominent signatures: One is the peak

in the system’s response versus noise strength D. The other

is the position of the peak and the signal frequency satisfying

C0ðDmÞ � 2fs; or equivalently, 1=Dm � �lnðfsÞ according to

Eq. (3). In Fig. 2(b), where eþðtÞ is applied, we plot qR ver-

sus 1=D and fs which shows clearly both signatures of SR. In

particular, the nearly linear relationship between C0ðDmÞ and

fs is demonstrated as shown in the inset of Fig. 2(b). The

slope of C0ðDmÞ versus fs obtained from the best-fit to a line

is 2.7, which is consistent with the numerical result previ-

ously obtained for SR under continuous modulation.23 In

addition, we numerically calculate the power spectral density

SðfsÞ of the flux particle’s trajectories UðtÞ generated by

Monte Carlo simulation of Eq. (2). It is found that SðfsÞ
reaches its maximum at the same value of D as qR does. We

thus conclude that SR plays a central role in the bistable sys-

tem’s response to single-cycle signals.

In order to compare the result of our measurements with

that of numerical study over the entire parameter space cov-

ered by the experiment, we adopt the two-state model4,24 and

introduce the rate equation

dqR tð Þ
dt
¼ �C�qR tð Þ þ Cþ 1� qR tð Þ

� �
; (4)

with the initial condition qLð0Þ ¼ 1; qRð0Þ ¼ 0. Here, qR

(qL ¼ 1� qR) is the fractional population of the right (left)

potential well. When e0 6¼ 0, the barrier height is oscillating

between DU06e0 and the transition rates are time-dependent

C6 tð Þ ¼ C0 exp �6e0 sin 2p ftð Þ
D

� �
; (5)

where Cþ and C� denote the rates of left-to-right and right-

to-left transitions, respectively. C0 is given by Eq. (3). Using

the system parameters given above, we numerically integrate

Eq. (4) to obtain qRðtÞ as a function of fs and D. The result is

shown in Fig. 2(c). It can be seen that the key features of the

experimental data are well reproduced.

Next, we show that the sensitivity of detecting single-

cycle signals is comparable to that of detecting many-cycle

signals and that one can predict the population distribution

of the bistable systems at the end of N-cycle modulations

qR;N � qRðNsÞ ¼ 1� qL;N from that of single-cycle modula-

tion qR;1. It is straightforward to obtain the recursion relation

qR;nþ1 ¼ qL;nPþ þ qR;nð1� P�Þ
¼ ð1� qR;nÞPþ þ qR;nð1� P�Þ: (6)

The first (second) term of the r.h.s. of Eq. (6) is the fractional

population of the left (right) well at t ¼ ns that ends

(remains) in the right well at t ¼ ðnþ 1Þs. Pþð�Þ is the prob-

ability of switching from the left (right) to the right (left)

well during the time interval ns � t � ðnþ 1Þs. Notice that

with the single-cycle perturbation e6ð0 � t � sÞ and the ini-

tial condition qR;0 ¼ 0, one has P6 ¼ qR;1 by taking into

consideration the spatial and temporal symmetry properties

of the rf-SQUID potential and e6. Thus, we can obtain P6

directly from the data presented in Fig. 2(a). Because Eq. (6)

is valid for arbitrary noise strength D and signal frequency fs,
we can compute qR;N from P6 for any integer N> 1. We find

that as N increases qR;N converges rapidly. In order to inves-

tigate the dependence of SR on the number of signal cycles

N, we modify the experimental procedure by changing the

duration of the applied signal and noise from s to 0.3 ms.

Thus, we have N¼ 3 for fs¼ 10 kHz, which increases ulti-

mately to N¼ 60 for fs¼ 200 kHz. In Fig. 3(a), the measured

qR;N is plotted against 1=D and fs, which compares well with

qR;N computed from Eq. (6) by using the measured P6 as

inputs [see Fig. 3(b)] and that obtained by solving the corre-

sponding rate equation (4) [see Fig. 3(c)]. The results pre-

sented in Fig. 3 all have two distinctive features: (i) The

threshold noise strength D0 which demarcates the blue region

(qR;N � 0Þ and the yellow region depends weakly on the

number of signal cycles N and (ii) 1=Dm / �lnðfsÞ remains

valid for the entire range of 3 � N � 60. As shown in the

inset of Fig. 3(a), the dependence of C0ðDmÞ on fs is approxi-

mately linear with a slope of about 2.6. These two features

strongly indicate that the sensitivity of detecting single-cycle

signals is similar to that of many-cycle and continuous wave

signals and that SR does exist in the systems driven by small

single-cycle signals.

FIG. 3. (a) Measured qR as a function of 1=D and fs with a constant duration (0.3 ms). SR remains as shown in the inset. (b) qR as a function of 1=D and fs with

a constant duration (0.3 ms), derived from the recursion relation Eq. (6) and P6 obtained from the experimental results when single-cycle signals are used.

(c) Numerical calculation of qR as a function of 1=D and fs with a constant duration (0.3 ms).
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In summary, using an rf-SQUID as a prototypical bistable

system, we have demonstrated the existence of SR with

single-cycle perturbation to the symmetric double-well poten-

tial of the system. Furthermore, we have investigated the pos-

sibility of exploiting SR for detecting small single-cycle and

few-cycle signals in noisy environment. We have found that a

proper amount of noise can lead to SR which enhances the

sensitivity of detection. Our work provides insights into the

behavior of bistable systems under the combined influence of

weak single-cycle (or few-cycle) periodic modulation and

noise. Because conventional techniques, such as phase sensi-

tive lock-in and heterodyne detection schemes, are not appli-

cable to detecting single-cycle and few-cycle signals buried in

noise, the method demonstrated here is promising for applica-

tions where signals are unavoidably mixed up with noise and

only last a very small number of cycles.
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