10,070 research outputs found
Stochastic Combinatorial Optimization via Poisson Approximation
We study several stochastic combinatorial problems, including the expected
utility maximization problem, the stochastic knapsack problem and the
stochastic bin packing problem. A common technical challenge in these problems
is to optimize some function of the sum of a set of random variables. The
difficulty is mainly due to the fact that the probability distribution of the
sum is the convolution of a set of distributions, which is not an easy
objective function to work with. To tackle this difficulty, we introduce the
Poisson approximation technique. The technique is based on the Poisson
approximation theorem discovered by Le Cam, which enables us to approximate the
distribution of the sum of a set of random variables using a compound Poisson
distribution.
We first study the expected utility maximization problem introduced recently
[Li and Despande, FOCS11]. For monotone and Lipschitz utility functions, we
obtain an additive PTAS if there is a multidimensional PTAS for the
multi-objective version of the problem, strictly generalizing the previous
result.
For the stochastic bin packing problem (introduced in [Kleinberg, Rabani and
Tardos, STOC97]), we show there is a polynomial time algorithm which uses at
most the optimal number of bins, if we relax the size of each bin and the
overflow probability by eps.
For stochastic knapsack, we show a 1+eps-approximation using eps extra
capacity, even when the size and reward of each item may be correlated and
cancelations of items are allowed. This generalizes the previous work [Balghat,
Goel and Khanna, SODA11] for the case without correlation and cancelation. Our
algorithm is also simpler. We also present a factor 2+eps approximation
algorithm for stochastic knapsack with cancelations. the current known
approximation factor of 8 [Gupta, Krishnaswamy, Molinaro and Ravi, FOCS11].Comment: 42 pages, 1 figure, Preliminary version appears in the Proceeding of
the 45th ACM Symposium on the Theory of Computing (STOC13
Stable sets and mean Li-Yorke chaos in positive entropy systems
It is shown that in a topological dynamical system with positive entropy,
there is a measure-theoretically "rather big" set such that a multivariant
version of mean Li-Yorke chaos happens on the closure of the stable or unstable
set of any point from the set. It is also proved that the intersections of the
sets of asymptotic tuples and mean Li-Yorke tuples with the set of topological
entropy tuples are dense in the set of topological entropy tuples respectively.Comment: The final version, reference updated, to appear in Journal of
Functional Analysi
A new potential radiosensitizer: ammonium persulfate modified WCNTs
Radiotherapy plays a very important role in cancer treatment. Radiosensitizers have been widely used to enhance the radiosensitivity of cancer cells at given radiations. Here we fabricate multi-walled carbon nanotubes with ammonium persulfate, and get very short samples with 30-50 nanometer length. Cell viability assay show that f-WCNTs induce cell death significantly. We hypothesize that free radicals originated from hydroxyl and carbonyl groups on the surface of f-WCNTs lead cell damage
- …