It is shown that in a topological dynamical system with positive entropy,
there is a measure-theoretically "rather big" set such that a multivariant
version of mean Li-Yorke chaos happens on the closure of the stable or unstable
set of any point from the set. It is also proved that the intersections of the
sets of asymptotic tuples and mean Li-Yorke tuples with the set of topological
entropy tuples are dense in the set of topological entropy tuples respectively.Comment: The final version, reference updated, to appear in Journal of
Functional Analysi