20 research outputs found

    Oxygen Nanobubbles-Embedded Hydrogel as Wound Dressing to Accelerate Healing

    No full text
    Herein, we propose an oxygen nanobubbles-embedded hydrogel (ONB-G) with carbopol for oxygenation of wounds to accelerate the wound healing process. We integrate carbopol, hydrogel, and dextran-based oxygen nanobubbles (ONBs) to prepare ONB-G where ONBs can hold and release oxygen to accelerate wound healing. Oxygen release tests showed that the proposed ONB-G could encapsulate oxygen in the hydrogels for up to 34 days; meanwhile, fluorescence studies indicated that the ONB-G could maintain high oxygen levels for up to 4 weeks. The effect of carbopol concentration on the oxygen release capacity and rheological features of the ONB-G were also investigated along with the sterility of ONB-G. HDFa cell-based studies were first conducted to evaluate the viability, proliferation, and revival of cells in hypoxia. Scratch assay and mRNA expression studies indicated the potential benefit for wound closure. Histological evaluation of tissues with a pig model with incision and punch wounds showed that treatment with ONB-G exhibited improved healing compared with hydrogel without ONBs or treated without the gel. Our studies show that dextran-shell ONBs embedded in a gel (ONB-G) have the potential to accelerate wound healing, given its oxygen-holding capacity and release properties

    Co-expression analysis of tissue-specific DEGs and MAPKKK genes.

    No full text
    <p>The weight value obtained from the WGCNA package was used as a parameter for the parametric analysis of gene co-expression levels. A cutoff of 0.2 was used to select highly co-expressed genes in all three tissues. The left side of the heat map represents the Z-scores obtained from a parametric analysis of gene co-expression. The lower left bar represents the degrees of the Z-score scale. The right side of the heat map represents the expression patterns of the DEGs co-expressed with MAPKKKs that were enriched in the corresponding pathways on the left. The lower right bar represents the log2 of the drought/control ratio.</p

    RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize

    No full text
    <div><p>The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction pathway that is involved in plant development and stress responses. As the first component of this phosphorelay cascade, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascade to promote the appropriate cellular responses; however, the functions of MAPKKKs in maize are unclear. Here, we identified 71 MAPKKK genes, of which 14 were novel, based on a computational analysis of the maize (<i>Zea mays</i> L.) genome. Using an RNA-seq analysis in the leaf, stem and root of maize under well-watered and drought-stress conditions, we identified 5,866 differentially expressed genes (DEGs), including 8 MAPKKK genes responsive to drought stress. Many of the DEGs were enriched in processes such as drought stress, abiotic stimulus, oxidation-reduction, and metabolic processes. The other way round, DEGs involved in processes such as oxidation, photosynthesis, and starch, proline, ethylene, and salicylic acid metabolism were clearly co-expressed with the MAPKKK genes. Furthermore, a quantitative real-time PCR (qRT-PCR) analysis was performed to assess the relative expression levels of MAPKKKs. Correlation analysis revealed that there was a significant correlation between expression levels of two MAPKKKs and relative biomass responsive to drought in 8 inbred lines. Our results indicate that MAPKKKs may have important regulatory functions in drought tolerance in maize.</p></div

    Easy Synthesis and Imaging Applications of Cross-Linked Green Fluorescent Hollow Carbon Nanoparticles

    No full text
    We propose an ingenious method for synthesizing cross-linked hollow fluorescent carbon nanoparticles (HFCNs) with green emission by simply mixing acetic acid, water, and diphosphorus pentoxide. This is an automatic method without external heat treatment to rapidly produce large quantities of HFCNs, in contrast to other syntheses of fluorescent carbon nanoparticles that required high temperature, complicated operations, or long reaction times. Characterizations of HFCNs through high-resolution transmission electron microscopy, infrared/Raman spectroscopy, and X-ray diffraction indicate that abundant small oxygenous graphite domains existed and endowed the HFCNs with fluorescent properties. After simple post-treatments, the cross-linked HFCNs can be used for cell-imaging applications. Compared with traditional dyes and CdTe quantum dots, HFCNs are the superior fluorescent bioimaging agent according to their low toxicity, stability, and resistance to photobleaching. The HFCNs were also applied to watermark ink and fluorescent powder, showing their promising potentials for further wide usage

    Differential expression of MAPKKKs identified by RNA-seq and qRT-PCR.

    No full text
    <p>(a, b and c). Expression patterns of 71 MAPKKK genes in the three tissues. (a). ZIK family genes. (b). MEKK family genes. (c). Raf family genes. (d). Relative expression levels of the MAPKKK genes in various tissues based on qRT-PCR analysis. The expression in leaf is shown on the left. The expression in stem is shown on the right.</p

    Relative gene expression of the 8 MAPKKK genes in various inbred lines based on qRT-PCR analysis.

    No full text
    <p>To determine whether the relative expression levels of the drought stress-responsive MAPKKK genes differed among varieties induced by drought, ZD619 and the 6 inbred maize lines J24, J853, X178, E28, C8605-2, 200B, Q319 and B73 were used. Lines X178, J24 are drought-resistant lines; 200B and E28 have poor drought tolerance. The eight MAPKKK genes are <i>GRMZM2G305066</i> (<i>ZmMAPKKK18</i>), <i>GRMZM2G165099</i> (<i>ZmMAPKKK19</i>), <i>GRMZM2G476477</i> (<i>ZmMAPKKK20</i>), <i>GRMZM2G173965</i> (<i>ZmMAPKKK21</i>), <i>GRMZM2G041774</i> (<i>ZmMAPKKK22</i>), <i>GRMZM2G021416</i> (<i>ZmMAPKKK26</i>), <i>GRMZM2G063069</i> (<i>ZmMAPKKK56</i>), <i>GRMZM2G474546</i> (<i>ZmMAPKKK73</i>). * indicates significant differences in comparison with the control at P < 0.05 respectively. Error bars indicate standard deviation for three replicates.</p

    Pathway enrichment of differentially expressed genes involved in different regulatory processes under drought stress.

    No full text
    <p>A q-value cutoff of 0.05 was used to select enriched gene sets in all three tissues. The heat map represents the Z-scores obtained from a parametric analysis of gene set enrichment q-values for term enrichment. Red represents enriched genes in the treatment group that were over-represented compared with the control set. Blue represents the enriched genes in the treatment group that were under-represented compared with the control set. The absolute values represent the enrichment level. The bar represents the Z-score region from -3 to 3.</p

    Phylogenetic tree and genomic locations of maize, rice and Arabidopsis MAPKKK family genes.

    No full text
    <p>The different colors represent three species. Red represents maize, blue represents rice, and pink represents Arabidopsis. (a). Raf subfamily. (b). MEKK subfamily. (c). ZIK subfamily. (d). Physical locations of MAPKKK genes on maize chromosomes.</p

    A model of drought stress effects on maize.

    No full text
    <p>The colored shapes represent groups of glyphs with similar processes or events. The arrows ending in a solid triangle indicate positive effects. The arrows ending in a transverse line indicate a clear negative influence. The arrows ending in a hollow triangle indicate co-expression. The curved arrows indicate positive feedback.</p
    corecore