32,077 research outputs found

    Thermodynamics of AdS Black Holes in Einstein-Scalar Gravity

    Get PDF
    We study the thermodynamics of nn-dimensional static asymptotically AdS black holes in Einstein gravity coupled to a scalar field with a potential admitting a stationary point with an AdS vacuum. Such black holes with non-trivial scalar hair can exist provided that the mass-squared of the scalar field is negative, and above the Breitenlohner-Freedman bound. We use the Wald procedure to derive the first law of thermodynamics for these black holes, showing how the scalar hair (or "charge") contributes non-trivially in the expression. We show in general that a black hole mass can be deduced by isolating an integrable contribution to the (non-integrable) variation of the Hamiltonian arising in the Wald construction, and that this is consistent with the mass calculated using the renormalised holographic stress tensor and also, in those cases where it is defined, with the mass calculated using the conformal method of Ashtekar, Magnon and Das. Similar arguments can also be given for the smooth solitonic solutions in these theories. Neither the black hole nor the soliton solutions can be constructed explicitly, and we carry out a numerical analysis to demonstrate their existence and to provide approximate checks on some of our thermodynamic results.Comment: 42 pages, 2 figures. Version published in JHEP, plus a "Note Added" expanding on our definition of "mass" via the first la

    Three-Loop Leading Singularities and BDS Ansatz for Five Particles

    Full text link
    We use the leading singularity technique to determine the planar three-loop five-particle amplitude in N=4 super Yang-Mills in terms of a simple basis of integrals. We analytically compute the integral coefficients for both the parity-even and the parity-odd parts of the amplitude. The parity-even part involves only dual conformally invariant integrals. Using the method of obstructions we numerically evaluate two previously unfixed coefficients which appear in the three-loop BDS ansatz.Comment: 20 pages, 2 figures, v2: very minor change

    The Finite Basis Problem for Kiselman Monoids

    Full text link
    In an earlier paper, the second-named author has described the identities holding in the so-called Catalan monoids. Here we extend this description to a certain family of Hecke--Kiselman monoids including the Kiselman monoids Kn\mathcal{K}_n. As a consequence, we conclude that the identities of Kn\mathcal{K}_n are nonfinitely based for every n4n\ge 4 and exhibit a finite identity basis for the identities of each of the monoids K2\mathcal{K}_2 and K3\mathcal{K}_3. In the third version a question left open in the initial submission has beed answered.Comment: 16 pages, 1 table, 1 figur

    Exact Solution of a Monomer-Dimer Problem: A Single Boundary Monomer on a Non-Bipartite Lattice

    Get PDF
    We solve the monomer-dimer problem on a non-bipartite lattice, the simple quartic lattice with cylindrical boundary conditions, with a single monomer residing on the boundary. Due to the non-bipartite nature of the lattice, the well-known method of a Temperley bijection of solving single-monomer problems cannot be used. In this paper we derive the solution by mapping the problem onto one on close-packed dimers on a related lattice. Finite-size analysis of the solution is carried out. We find from asymptotic expansions of the free energy that the central charge in the logarithmic conformal field theory assumes the value c=2c=-2.Comment: 15 pages, 1 figure, submitted to Phy. Rev. E; v2: revised Acknowledgment

    Tunable waveguide lattices with non-uniform parity-symmetric tunneling

    Full text link
    We investigate the single-particle time evolution and two-particle quantum correlations in a one-dimensional NN-site lattice with a site-dependent nearest neighbor tunneling function tα(k)=t0[k(Nk)]α/2t_\alpha(k)=t_0[k(N-k)]^{\alpha/2}. Since the bandwidth and the energy levels spacings for such a lattice both depend upon α\alpha, we show that the observable properties of a wavepacket, such as its spread and the relative phases of its constitutents, vary dramatically as α\alpha is varied from positive to negative values. We also find that the quantum correlations are exquisitely sensitive to the form of the tunneling function. Our results suggest that arrays of waveguides with position-dependent evanascent couplings will show rich dynamics with no counterpart in present-day, traditional systems.Comment: 5 pages, 4 figure
    corecore