173 research outputs found

    ROAD: Reality Oriented Adaptation for Semantic Segmentation of Urban Scenes

    Full text link
    Exploiting synthetic data to learn deep models has attracted increasing attention in recent years. However, the intrinsic domain difference between synthetic and real images usually causes a significant performance drop when applying the learned model to real world scenarios. This is mainly due to two reasons: 1) the model overfits to synthetic images, making the convolutional filters incompetent to extract informative representation for real images; 2) there is a distribution difference between synthetic and real data, which is also known as the domain adaptation problem. To this end, we propose a new reality oriented adaptation approach for urban scene semantic segmentation by learning from synthetic data. First, we propose a target guided distillation approach to learn the real image style, which is achieved by training the segmentation model to imitate a pretrained real style model using real images. Second, we further take advantage of the intrinsic spatial structure presented in urban scene images, and propose a spatial-aware adaptation scheme to effectively align the distribution of two domains. These two modules can be readily integrated with existing state-of-the-art semantic segmentation networks to improve their generalizability when adapting from synthetic to real urban scenes. We evaluate the proposed method on Cityscapes dataset by adapting from GTAV and SYNTHIA datasets, where the results demonstrate the effectiveness of our method.Comment: Add experiments on SYNTHIA, CVPR 2018 camera-ready versio

    Domain Adaptive Faster R-CNN for Object Detection in the Wild

    Full text link
    Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.Comment: Accepted to CVPR 201

    Key criterion for achieving giant recovery strains in polycrystalline Fe-Mn-Si based shape memory alloys

    Get PDF
    In this study, it is proposed that coarsening austenitic grains is a key criterion for achieving giant recovery strains in polycrystalline Fe-Mn-Si based shape memory alloys. In order to verify the hypothesis, the relationship between recovery strains and austenitic grain-sizes in cast and processed Fe-Mn-Si based shape memory alloys was investigated. The recovery strain of cast Fe-19Mn-5.5Si-9Cr-4.5Ni alloy with the coarse austenitic grains of 652 µm reached 7.7% while the recovery strain of one with the relatively small austenitic grains of 382 µm was only 5.4%. Moreover, a recovery strain of 5.9%, which is the highest previously published value for solution-treated processed Fe-Mn-Si based shape memory alloys, was obtained by coarsening the austenitic grains through only solution treatment at 1483 K for 360 min in a processed Fe-17Mn-5.5Si-9Cr-5.5Ni-0.12C alloy. However, its recovery strain was still 5.9% after thermo-mechanical treatment consisting of 10% tensile strain at room temperature and annealing at 1073 K for 30 min. This happens because annealing twins play a negative role, refining the austenitic grains, limiting the recovery strains to below 6%. In summary, coarse austenitic grains enable the achievement large recovery strains by two mechanisms. Firstly, the grains are bigger, and consequently there are fewer grain boundaries, and thus their suppressive effects of grain boundaries on stress-induced ε martensitic transformation is reduced. Secondly, coarse austenitic grains are advantageous to introduce ε martensite with single orientation and reduce the collisions of different martensite colonies, especially when the deformation strain is large. As such, the ceiling of recovery strains is dependent on the austenitic grain-sizes

    BPLLDA: Predicting lncRNA-Disease Associations Based on Simple Paths With Limited Lengths in a Heterogeneous Network

    Get PDF
    In recent years, it has been increasingly clear that long noncoding RNAs (lncRNAs) play critical roles in many biological processes associated with human diseases. Inferring potential lncRNA-disease associations is essential to reveal the secrets behind diseases, develop novel drugs, and optimize personalized treatments. However, biological experiments to validate lncRNA-disease associations are very time-consuming and costly. Thus, it is critical to develop effective computational models. In this study, we have proposed a method called BPLLDA to predict lncRNA-disease associations based on paths of fixed lengths in a heterogeneous lncRNA-disease association network. Specifically, BPLLDA first constructs a heterogeneous lncRNA-disease network by integrating the lncRNA-disease association network, the lncRNA functional similarity network, and the disease semantic similarity network. It then infers the probability of an lncRNA-disease association based on paths connecting them and their lengths in the network. Compared to existing methods, BPLLDA has a few advantages, including not demanding negative samples and the ability to predict associations related to novel lncRNAs or novel diseases. BPLLDA was applied to a canonical lncRNA-disease association database called LncRNADisease, together with two popular methods LRLSLDA and GrwLDA. The leave-one-out cross-validation areas under the receiver operating characteristic curve of BPLLDA are 0.87117, 0.82403, and 0.78528, respectively, for predicting overall associations, associations related to novel lncRNAs, and associations related to novel diseases, higher than those of the two compared methods. In addition, cervical cancer, glioma, and non-small-cell lung cancer were selected as case studies, for which the predicted top five lncRNA-disease associations were verified by recently published literature. In summary, BPLLDA exhibits good performances in predicting novel lncRNA-disease associations and associations related to novel lncRNAs and diseases. It may contribute to the understanding of lncRNA-associated diseases like certain cancers
    • …
    corecore