425 research outputs found

    Design Principles for Self-forming Interfaces Enabling Stable Lithium Metal Anodes

    Full text link
    The path toward Li-ion batteries with higher energy-densities will likely involve use of thin lithium metal (Li) anode (<50 μ\mum in thickness), whose cyclability today remains limited by dendrite formation and low Coulombic efficiency. Previous studies have shown that the solid-electrolyte-interface (SEI) of Li metal plays a crucial role in Li electrodeposition and stripping. However, design rules for optimal SEIs on lithium metal are not well-established. Here, using integrated experimental and modeling studies on a series of structurally-similar SEI-modifying compounds as model systems, we reveal the relationship between SEI compositions, Li deposition morphology and coulombic efficiency, and identify two key descriptors (ionicity and compactness) for high performance SEIs through integrated experimental and modeling studies. Using this understanding, we design a highly ionic and compact SEI that shows excellent cycling performance in LiCoO2_2-Li full cells at practical current densities. Our results provide guidance for the rational selection and optimization of SEI modifiers to further improve Li metal anodes.Comment: 21 pages, 6 figures and Supplementary Informatio

    Meta-analysis of optical lowcoherence reflectometry versus partial coherence interferometry biometry

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/A meta-analysis to compare ocular biometry measured by optical low-coherence reflectometry (Lenstar LS900; Haag Streit) and partial coherence interferometry (the IOLMaster optical biometer; Carl Zeiss Meditec). A systematic literature search was conducted for articles published up to August 6th 2015 in the Cochrane Library, PubMed, Medline, Embase, China Knowledge Resource Integrated Database and Wanfang Data. A total of 18 studies involving 1921 eyes were included. There were no statistically significant differences in axial length (mean difference [MD] 0 mm; 95% confidence interval (CI) −0.08 to 0.08 mm; p = 0.92), anterior chamber depth (MD 0.02 mm; 95% CI −0.07 to 0.10 mm; p = 0.67), flat keratometry (MD −0.05 D; 95% CI −0.16 to 0.06 D; p = 0.39), steep keratometry (MD −0.09 D; 95% CI −0.20 to 0.03 D; p = 0.13), and mean keratometry (MD −0.15 D; 95% CI −0.30 to 0.00 D; p = 0.05). The white to white distance showed a statistically significant difference (MD −0.14 mm; 95% CI −0.25 to −0.02 mm; p = 0.02). In conclusion, there was no difference in the comparison of AL, ACD and keratometry readings between the Lenstar and IOLMaster. However the WTW distance indicated a statistically significant difference between the two devices. Apart from the WTW distance, measurements for AL, ACD and keratometry readings may be used interchangeability with both devices

    RCAgent: Cloud Root Cause Analysis by Autonomous Agents with Tool-Augmented Large Language Models

    Full text link
    Large language model (LLM) applications in cloud root cause analysis (RCA) have been actively explored recently. However, current methods are still reliant on manual workflow settings and do not unleash LLMs' decision-making and environment interaction capabilities. We present RCAgent, a tool-augmented LLM autonomous agent framework for practical and privacy-aware industrial RCA usage. Running on an internally deployed model rather than GPT families, RCAgent is capable of free-form data collection and comprehensive analysis with tools. Our framework combines a variety of enhancements, including a unique Self-Consistency for action trajectories, and a suite of methods for context management, stabilization, and importing domain knowledge. Our experiments show RCAgent's evident and consistent superiority over ReAct across all aspects of RCA -- predicting root causes, solutions, evidence, and responsibilities -- and tasks covered or uncovered by current rules, as validated by both automated metrics and human evaluations. Furthermore, RCAgent has already been integrated into the diagnosis and issue discovery workflow of the Real-time Compute Platform for Apache Flink of Alibaba Cloud

    Greater chemical signaling in root exudates enhances soil mutualistic associations in invasive plants compared to natives

    Get PDF
    Invasive plants can change soil properties resulting in improved growth. Although invaders are known to alter soil chemistry, it remains unclear if chemicals secreted by roots facilitate invasive plant–soil mutualisms. With up to 19 confamilial pairs of invasive and native plants, and most of which were congeners, we explored the root exudate-induced changes in plant–arbuscular mycorrhizal (AM) fungal mutualisms. We found that, relative to natives, invaders had greater AM colonization, greater biomass and their root exudates contained higher concentrations of two common chemical signals – quercetin and strigolactones – which are known to stimulate AM fungal growth and root colonization. An exudate exchange experiment showed that root exudates from invaders increased AM colonization more than exudates from natives. However, application of activated carbon led to greater reduction in AM colonization and plant biomass for invaders than natives, suggesting stronger effects of chemical signals in root exudates from invaders. We show that nonnative plants promote interactions with soil mutualists via enhancing root exudate chemicals, which could have important implications for invasion success

    Case report: A case of heterogeneity of the antitumor response to immune checkpoint inhibitors in a patient with relapsed hepatocellular carcinoma

    Get PDF
    The existence of tumor heterogeneity is widely recognized; however, heterogeneity of the antitumor response in multiple tumor nodules in the same patient has not been reported. Sintilimab, a monoclonal antiprogrammed cell death receptor-1 (PD-1) antibody, was used to treat patients with unresectable hepatocellular carcinoma (HCC). In the present study, we report a case of therapeutic heterogeneity in relapsed HCC with lung metastases. A 57-year-old female patient was diagnosed with HCC and underwent radical hepatectomy. One and a half years later, imaging scans found multiple metastatic tumors in the lung, which were accompanied by an increased α-fetoprotein (AFP) level. The patient then started to receive sintilimab. In the first 6 months after sintilimab treatment, all the metastatic nodules regressed gradually and ultimately disappeared, except for one nodule, which remained stable in the following 3 months. Finally, the patient underwent pulmonary lobectomy to remove the remaining nodule. Thereafter, follow-up visits showed the AFP level decreased to normal and imaging scans showed no signs of recurrence, confirming that the patient exhibited a clinically complete response. Pathological assessments showed that in the primary tumor site, the tumor comprised moderately differentiated HCC with a few infiltrated cytotoxic T cells and negative PD-L1 expression. While in the metastatic site, the nodule was composed of poorly differentiated HCC with cytotoxic T-cell infiltration with few cells inside the tumor and expressed PD-L1 in some areas of the tumor. There were dynamic alterations of PD-L1 expression and cytotoxic T-cell infiltration in the primary and relapsed HCC lesions after anti-PD-1 treatment. This case presented the heterogeneities of both the tumor microenvironment and the following antitumor response among the metastatic nodules in the same patient and revealed the importance of comprehensive therapy in cancer treatment

    Next generation sequencing as a new detection strategy for maternal cell contamination in clinical prenatal samples

    Get PDF
    Objectives: The maternal cell contamination in chorionic villus or amniotic fluid presents a serious preanalytical risk for prenatal misdiagnosis. The following study presents and validates a novel process for identifying MCC by detecting short tandem repeat markers on Ion Proton system. Initially, MCC testing was performed during the detection of chromosomal abnormalities so as to improve the detection efficiency and accuracy of this method. Material and methods: More than 70 STR loci were selected to establish the detection progress. Capillary electrophoresis was used to compare the next generation sequencing detection results, as well as to identify the optimal STR on Ion Proton system. Evaluation criteria for maternal cell contamination were set, and the automated data analysis was performed. The detection sensitivity was validated via 4 groups with mixed samples and different proportions. Results: Consequently, twenty-three clinical samples were tested to evaluate the detection accuracy. In addition, 14 reli­able STR loci, which were stably detected in more than 25 samples, were found. The detection sensitivity in maternal cell contamination was no less than 20%, while its accuracy reached 100% in clinical samples. Conclusions: Finally, we established and validated a novel detection procedure for maternal cell contamination in clinical prenatal samples using next generation sequencing. This procedure allowed us to simultaneously perform prenatal test­ing and MCC testing. Unlike the traditional capillary electrophoresis, this method is rapid, highly sensitive, and suitable for wide range of clinical applications

    Variable-rate spray system for unmanned aerial applications using lag compensation algorithm and pulse width modulation spray technology

    Get PDF
    To ensure that a variable-rate spray (VRS) system can perform unmanned aerial spray in accordance with a prescription map at different flight speeds, we examine in this paper such significant factors as the response time of the VRS system and the pressure fluctuation of the nozzle during the variable-rate spraying process. The VRS system uses a lag compensation algorithm (LCA) to counteract the droplet deposition position lag caused by the system response delay. In addition, pulse width modulated (PWM) solenoid valves are used for controlling the flowrates of the nozzles on the variable-rate spray system, and a mathematical model was constructed for the spray rate (L min-1) and the relative proportion of time (duty cycle) each solenoid valve is open. The pressure drop and solenoid valve response time at different duty cycles (50%~90%) were measured by indoor experiments. Meanwhile, the lag distance (LD), spray accuracy, and droplet deposition characteristics of the VRS system were tested by conducting outdoor experiments at different flight speeds (4m s-1, 5m s-1, 6m s-1). The results show that LCA can effectively reduce the lag distance. The lag distance (LD) values of the VRS system with LCA ranged from -0.27 to 0.78m with an average value of 0.32m, while without LCA, the LD values increased to 3.5~4.3m with an average value of 3.87m. The overall spray position accuracy was in the range of 91.56%~97.32%. Furthermore, the spray coverage and deposition density, determined using water sensitive paper (WSP), were used to evaluate the spray application performance taking into account the spray volume applied. The VRS system can provide the most suitable spray volumes for insecticide and fungicide plant protection products. Based on a prescription map, the optimized VRS system can achieve accurate pesticide spraying as well as desirable spray coverage and deposition density
    • …
    corecore