23 research outputs found

    Thermal conduction simulation based on reconstruction digital rocks with respect to fractures

    Get PDF
    Effective thermal conductivity (ETC), as a necessary parameter in the thermal properties of rock, is affected by the pore structure and the thermal conduction conditions. To evaluate the effect of fractures and saturated fluids on sandstone’s thermal conductivity, we simulated thermal conduction along three orthogonal (X, Y, and Z) directions under air- and water-saturated conditions on reconstructed digital rocks with different fractures. The results show that the temperature distribution is separated by the fracture. The significant difference between the thermal conductivities of solid and fluid is the primary factor influencing the temperature distribution, and the thermal conduction mainly depends on the solid phase. A nonlinear reduction of ETC is observed with increasing fracture length and angle. Only when the values of the fracture length and angle are large, a negative effect of fracture aperture on the ETC is apparent. Based on the partial least squares (PLS) regression method, the fluid thermal conductivity shows the greatest positive influence on the ETC value. The fracture length and angle are two other factors significantly influencing the ETC, while the impact of fracture aperture may be ignored. We obtained a predictive equation of ETC which considers the related parameters of digital rocks, including the fracture length, fracture aperture, angle between the fracture and the heat flux direction, porosity, and the thermal conductivity of saturated fluid

    Construction of core-shell nanofiber membrane with enhanced interface compatibility for lithium-metal battery

    No full text
    Improving interface compatibility is critical to the solid-state lithium metal batteries. Thus, a novel type of core-shell nanocomposite polymer fiber membrane was prepared by a coaxial electrospinning technique. The coreshell nanofiber membranes contains poly (propylene carbonate) (PPC) in the shell, and poly(vinylidene fluorideco-hexafluoropropylene) (PVDF-HFP) that containing in-situ generated silica in the core. The structure, topography and compositions of the sample were investigated by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The nanocomposite membranes exhibit three-dimensional framework structure with well-dispersed fibers, and could be transformed readily into gel polymer electrolytes (GPEs) by being soaked in an ionic liquid solution. Our study showed that the core-shell PVDF-HFP-SiO2@PPC polymer electrolyte exhibited a relatively high electrolyte uptake of 460%. The core-shell electrolyte was found to play a significant role in increasing the interface compatibility. The optimized core-shell PVDF-HFP-SiO2@PPC electrolyte exhibited an enhanced ionic conductivity (1.05 mS cm(-1)) in comparison with the blend PVDF-HFP-SiO2-PPC electrolyte (0.5 mS cm(-1)) M 25 degrees C. This study demonstrates that the optimization of composition and microstructure is efficient in the fabrication of high-performance membranes for lithium-metal batteries

    Optimization Design of Injection Strategy for Surfactant-Polymer Flooding Process in Heterogeneous Reservoir under Low Oil Prices

    No full text
    Surfactant–polymer (SP) flooding has significant potential to enhance oil recovery after water flooding in mature reservoirs. However, the economic benefit of the SP flooding process is unsatisfactory under low oil prices. Thus, it is necessary to reduce the chemical costs and improve SP flooding efficiency to make SP flooding more profitable. Our goal was to maximize the incremental oil recovery of the SP flooding process after water flooding by using the equal chemical consumption cost to ensure the economic viability of the SP flooding process. Thus, a systematic study was carried out to investigate the SP flooding process under different injection strategies by conducting parallel sand pack flooding experiments to optimize the SP flooding design. Then, the comparison of the remaining oil distribution after water flooding and SP flooding under different injection strategies was studied. The results demonstrate that the EOR efficiency of the SP flooding process under the alternating injection of polymer and surfactant–polymer (PASP) is higher than that of conventional simultaneous injection of surfactant and polymer. Moreover, as the alternating cycle increases, the incremental oil recovery increases. Based on the analysis of fractional flow, incremental oil recovery, and remaining oil distribution when compared with the conventional simultaneous injection of surfactant and polymer, the alternating injection of polymer and surfactant–polymer (PASP) showed better sweep efficiency improvement and recovered more remaining oil trapped in the low permeability zone. Thus, these findings could provide insights into designing the SP flooding process under low oil prices

    Element Geochemical Characteristics and Provenance Conditions of the 1st Member of Jurassic Zhongjiangou Formation in Wudun Sag, Dunhuang Basin

    No full text
    In order to clarify the provenance of the 1st member of the Zhongjiangou formation in Wudun sag, Dunhuang basin, the structural attributes, weathering and sedimentary characteristics of the provenance area were analyzed by means of element geochemistry, so as to determine the differences of sediment sources in different well areas. The results show that the higher the Al2O3 and K2O contents, the higher the enrichment of large ion lithophile elements and high field strength elements, while the iron and magnesium elements are relatively deficient, and there are characteristics of medium degree differentiation of light and heavy rare earth elements in Well XC1 and Well D2. The lower the Al2O3 content and the higher the SiO2 content, a loss of large ion lithophile elements and high field strength elements are observed, while the ferrophilic magnesium elements show serious loss, as shown in the characteristics of the high degree of differentiation of light and heavy rare earth elements in Well D1. In the UCC-normalized element spidergrams, the trend of Well XC1 and Well D2 is similar, which is different from that of well D1, indicating that the sediments of Well XC1 and Well D2 come from the same provenance area, while the sediment of Well D1 comes from a different provenance area. The provenance area of Well XC1 and Well D2 shows strong tectonic activity and strong weathering, while the provenance area of well D1 exhibits relatively weak tectonic activity and weathering. Combined with previous research results, Wudun sag is mainly characterized by a faulted lacustrine basin controlled by the southern boundary fault in the Jurassic layer. Therefore, the sediments of Well XC1 and Well D2 mainly come from the southern Sanweishan uplift provenance area, with strong tectonic activity; the sediments of Well D1 mainly come from the northern Beishan provenance area, with relatively weak tectonic activity

    Is southwestern China experiencing more frequent precipitation extremes?

    No full text
    Climate extremes have and will continue to cause severe damages to buildings and natural environments around the world. A full knowledge of the probability of the climate extremes is important for the management and mitigation of natural hazards. Based on Mann–Kendall trend test and copulas, this study investigated the characteristics of precipitation extremes as well as their implications in southwestern China (Yunnan, Guangxi and Guizhou Province), through analyzing the changing trends and probabilistic characteristics of six indices, including the consecutive dry days, consecutive wet days, annual total wet day precipitation, heavy precipitation days (R25), max 5 day precipitation amount (Rx5) and the rainy days (RDs). Results showed that the study area had generally become drier (regional mean annual precipitation decreased by 11.4 mm per decade) and experienced enhanced precipitation extremes in the past 60 years. Relatively higher risk of drought in Yuanan and flood in Guangxi was observed, respectively. However, the changing trends of the precipitation extremes were not spatially uniform: increasing risk of extreme wet events for Guangxi and Guizhou, and increasing probability of concurrent extreme wet and dry events for Yunnan. Meanwhile, trend analyses of the 10 year return levels of the selected indices implied that the severity of droughts decreased in Yunnan but increased significantly in Guangxi and Guizhou, and the severity of floods increased in Yunnan and Guangxi in the past decades. Hence, the policy-makers need to be aware of the different characterizations and the spatial heterogeneity of the precipitation extremes

    Phase Transition Behaviors of Poly(<i>N</i>-isopropylacrylamide) Nanogels with Different Compositions Induced by (−)-Epigallocatechin-3-gallate and Ethyl Gallate

    No full text
    Phase transition behaviors of poly(N-isopropylacrylamide) nanogels with different compositions induced by (−)-epigallocatechin-3-gallate (EGCG) and ethyl gallate (EG) has been investigated systematically. Monodisperse poly(N-isopropylacrylamide-co-N-hydroxymethyl acrylamide) (P(NIPAM-co-NMAM)) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (P(NIPAM-co-HEMA)) nanogels with different feeding monomer ratios were prepared by emulsion polymerization. P(NIPAM-co-NMAM) nanogels exhibit rapid isothermal phase transition behavior in EGCG solutions with low concentration (10−3 mol/L) in less than 10 minutes. The thermosensitive phase transition behaviors of nanogels are affected not only by the copolymerized monomers but also by the concentrations of EGCG and EG in aqueous solutions. Nanogels remain in a shrunken state and do not exhibit thermosensitive phase transition behaviors in EGCG solutions (≥5 mmol/L), whereas they display thermo-responsive phase transition behaviors in EG solutions. The volume phase transition temperature (VPTT) shifts to lower temperatures with increasing EG concentration. The diameters of P(NIPAM-co-NMAM) nanogels decrease with increasing EG concentration at temperatures between 29 and 33 °C. In contrast, the diameters of P(NIPAM-co-HEMA) nanogels increase with increasing EGCG concentration at temperatures between 37 and 45 °C. The results demonstrate the potential of nanogels for simple detection of EG and EGCG concentrations in aqueous solutions over a wide temperature range, and EGCG can serve as a signal for the burst-release of drugs from the P(NIPAM-co-NMAM)-based carriers at physiological temperature

    UAV based soil moisture remote sensing in a karst mountainous catchment

    No full text
    Spatial distribution of soil moisture (SM) is a prerequisite for research and management of agriculture and ecology. However, it is still a challenge to retrieve SM data in highly heterogeneous landscapes. By investigating environmental factors (soil, vegetation and topography) and comparing different remote sensing sources (Landsat-8, Radarsat-2, ASTER Global Digital Elevation Model (DEM) V002 (ASTGTM2), unmanned aerial vehicle (UAV)) for karst mountainous catchments of southwest China, this study identified key controlling factors on the spatial distribution of SM and built a remote sensing model for SM estimation in highly heterogeneous landscapes. Results showed that vegetation type (35.7%), aspect (7.7%), height index (4.2%), soil bulk density (3.3%), soil total nitrogen (3.1%), aspect interact with vegetation type (3.4%) and soil total phosphorous (1.3%) totally explained 58.8% of the SM variability. The correlations between SM and topographic derivatives varied with DEM resolutions (1-50 m), and generally reached their highest values at 7 m for height index, slope gradient, and aspect, 16 m for flow accumulation and topographic wetness index, and 43 m for curvature. Partial least-squares regression analysis showed that optical and infrared bands from Landsat-8 and topographic derivatives from UAV photogrammetry DEM were more strongly con-elated with SM than other datasets. An empirical model (SM = 9.27 * 10(-2)HI - 1.82 * 10(-5) B5 + 0.519) with only height index and B5 band from Landsat-8 as inputs is proposed, as it shows acceptable performance (R-2 = 0.36; RMSE = 0.076). The results of this study provide useful information for SM remote sensing in karst mountainous area and similar heterogeneous landscapes

    Rational land-use types in the karst regions of China: Insights from soil organic matter composition and stability

    No full text
    Composition and stability of soil organic matter (SOM) affect the sustenance and productivity of soil over the long-term. This issue is particularly important for karst regions in China where the water supply and fertilizer use are limiting factors. Here, we used four indicators to evaluate changes in the composition and stability of SOM quantitatively in five main land-use types in karst area, including primary forest [PF], 15-year secondary forest [SF], grazing secondary forest [GF], abandoned farmland [AF] and farmland [FL]. We collected soil samples at a depth of 0-20 cm to conduct the analyses. Four indicators were used: soil physical and chemical properties, active organic carbon (C), humus C composition, and SOM functional groups. Our results showed that the content of SOM, total nitrogen, and easily oxidized organic C at 0-20 cm soil depth differed among the five land use types (P PF > GF > FL > AF. Solid-state C-13 NMR spectra showed that the highest ratio of Alkyl C/O-alkyl C was in AF, while the lowest was in SF. Overall, the comprehensive quality of SOM in different land-use types was PF (setting 100%) > SF (83.1%) > GF (58%) > AF (30.9%) > FL (29.9%). For karst areas, we suggest that farmlands in sloping area should be converted back to forests, with only moderate grazing being permitted, whereas farmlands in the plains should implement grain-forage rotation and grain-soybean rotation to meet the needs of the growing population and economic development. In conclusion, our findings provide a scientific basis from which to delineate rational land-use types for different land (geographical and geological) formations

    tRNA-Derived Fragments in Podocytes with Adriamycin-Induced Injury Reveal the Potential Mechanism of Idiopathic Nephrotic Syndrome

    No full text
    Idiopathic nephrotic syndrome (INS) is a disease involving injury to podocytes in the glomerular filtration barrier, and its specific causes have not been elucidated. Transfer RNA-derived fragments (tRFs), products of precise tRNA cleavage, have been indicated to play critical roles in various diseases. Currently, there is no relevant research on the role of tRFs in INS. This study intends to explore the changes in and importance of tRFs during podocyte injury in vitro and to further analyze the potential mechanism of INS. Differentially expressed tRFs in the adriamycin-treated group were identified by high-throughput sequencing and further verified by quantitative RT-PCR. In total, 203 tRFs with significant differential expression were identified, namely, 102 upregulated tRFs and 101 downregulated tRFs (q<0.05, ∣log2FC∣≥2). In particular, AS-tDR-008924, AS-tDR-011690, tDR-003634, AS-tDR-013354, tDR-011031, AS-tDR-001008, and AS-tDR-007319 were predicted to be involved in podocyte injury by targeting the Gpr, Wnt, Rac1, and other genes. Furthermore, gene ontology analysis showed that these differential tRFs were strongly associated with podocyte injury processes such as protein binding, cell adhesion, synapses, the actin cytoskeleton, and insulin-activate receptor activity. KEGG pathway analysis predicted that they participated in the PI3K-Akt signaling pathway, Wnt signaling pathway, and Ras signaling pathway. It was reported that these pathways contribute to podocyte injury. In conclusion, our study revealed that changes in the expression levels of tRFs might be involved in INS. Seven of the differentially expressed tRFs might play important roles in the process of podocyte injury and are worthy of further study
    corecore