1,513 research outputs found

    Laboratory-confirmed respiratory infections as triggers for acute myocardial infarction and stroke: a self-controlled case series analysis of national linked datasets from Scotland

    Get PDF
    While acute respiratory tract infections can trigger cardiovascular events, the differential effect of specific organisms is unknown. This is important to guide vaccine policy.Using national infection surveillance data linked to the Scottish Morbidity Record, we identified adults with a first myocardial infarction or stroke from January 1, 2004 to December 31, 2014 and a record of laboratory-confirmed respiratory infection during this period. Using self-controlled case series analysis, we generated age- and season-adjusted incidence ratios (IRs) for myocardial infarction (n=1227) or stroke (n=762) after infections compared with baseline time.We found substantially increased myocardial infarction rates in the week after Streptococcus pneumoniae and influenza virus infection: adjusted IRs for days 1-3 were 5.98 (95% CI 2.47-14.4) and 9.80 (95% CI 2.37-40.5), respectively. Rates of stroke after infection were similarly high and remained elevated to 28 days: day 1-3 adjusted IRs 12.3 (95% CI 5.48-27.7) and 7.82 (95% CI 1.07-56.9) for S. pneumoniae and influenza virus, respectively. Although other respiratory viruses were associated with raised point estimates for both outcomes, only the day 4-7 estimate for stroke reached statistical significance.We showed a marked cardiovascular triggering effect of S. pneumoniae and influenza virus, which highlights the need for adequate pneumococcal and influenza vaccine uptake. Further research is needed into vascular effects of noninfluenza respiratory viruses

    Unseeded One-Third Harmonic Generation in Optical Fibers

    Full text link
    We propose a new concept to generate efficient one-third harmonic light from an unseeded third harmonic process in optical fibers. Our concept is based on the dynamic constant (Hamiltonian) of the nonlinear third harmonic generation in optical fibers and includes a periodic array of nonlinear fibers and phase compensation elements. We test our concept with a simulation of the nonlinear interaction between the fundamental and third harmonic modes of a realistic optical fiber, demonstrating high-efficiency one-third harmonic generation. Our work opens a new approach to achieving the so far elusive one-third harmonic generation in optical fibers

    The Potential of Three Computer-Based Communication Activities for Supporting Older Adult Independent Living

    Get PDF
    Technology has become an increasingly integral part of life. For example, technology allows individuals to stay in touch with loved ones, obtain medical services through telehealthcare, and enjoy an overall higher quality of life. Particularly for older adults, using technology increases the likelihood that they will maintain their independence and autonomy. Long-distance caregiving has recently become a feasible option where caregivers for older adults can access reports and information about their loved one’s patterns that day (e.g., food and medication intake). Technology may be able to offset age-related challenges (e.g., caregiving, accessing healthcare, decreased social networks) by applying technology to the needs of older adults. Solutions for meeting such challenges, however, have been less targeted. In addition, the healthcare system is evolving to focus on providing options and services in the home. This has direct implications for older adults, as the majority of healthcare services are utilized by older adults. Research is still at the beginning stages of developing successful technology tools that are compatible with older adult users. Therefore, the design, implementation, and outcome of such computer-based communication activities will be discussed in this paper in order to guide future endeavors in technology marketed for older adults

    EUV and HXR Signatures of Electron Acceleration During the Failed Eruption of a Filament

    Full text link
    We search for EUV brightenings in TRACE 171 {\AA} images and HXR bursts observed during failed eruptions. We expect that if an eruption is confined due to interaction with overlying magnetic structures then we should observe effects connected with reconnection between magnetic structures and acceleration of particles. We utilized TRACE observations of three well observed failed eruptions. EUV images were compared to HXR spatial distribution reconstructed from Yohkoh/HXT and RHESSI data. The EUV light curves of a selected area were compared to height profiles of eruption, HXR emission and HXR photon spectral index of power-law fit to HXR data. We have found that EUV brightenings are closely related to the eruption velocity decrease, to HXR bursts and to episodes of hardening of HXR spectra. The EUV brightened areas are observed far from the flaring structure, in footpoints of large systems of loops observed 30-60 minutes after the maximum of a flare. These are not `post-flare' loops that are also observed but at significantly lower heights. The high lying systems of loops are observed at heights equal to height, at which eruption was observed to stop. We observed HXR source spatially correlated with EUV brightening only once. For other EUV brightened areas we estimated the expected brightness of HXR sources. We find that EUV brightenings are produced due to interaction between the erupting structure with overlying loops. The interaction is strong enough to heat the system of high loops. These loops cool down and are visible in EUV range about 30-60 minutes later. The estimated brightness of HXR sources associated with EUV brightenings shows that they are too weak to be detected with present instruments. However, next generation instruments will have enough dynamic range and sensitivity to enable such observations.Comment: A&A accepte

    Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81

    Full text link
    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations, we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M=108.96±0.12MM=10^{8.96\pm 0.12} M_{\odot} subhalo near one of the images, with a significance of 6.9σ6.9\sigma in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter subhalos down to M2×107MM\sim 2\times 10^7 M_{\odot}, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted dark matter subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 dataset (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of Λ\LambdaCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.Comment: 18 pages, 13 figures, Comments are welcom

    Thermal breakage of window glass in room fires conditions - Analysis of some important parameters

    Get PDF
    In a compartment fire, the breakage and possible fallout of a window glass has a significant impact on the fire dynamics. The thermal breakage of glass depends on various parameters such as glass type, edge shading, edges conditions and constraints on the glass. The purpose of the present study is to investigate some of the key parameters affecting the thermal breakage of window glass in fire conditions using a recently developed and validated computer tool. Fallout is not within the scope of this study. Different boundary conditions of the glass pane (unconstrained and constrained) subjected to fire radiant heat are investigated. The analysis shows that to prevent glass thermal breakage, it is important to provide enough spacing between the frame and glass pane to accommodate the thermal expansion, and constraints on the glass structure should be avoided. The zones where the glass is likely to crack first are shown. The study also quantifies the effects of glass edge conditions on its thermal breakage in fire conditions; such analysis has not been reported in the literature due to its complexity and the statistical nature of edge flaws. The results show that an ordinary float glass mostly used in windows, with the “as-cut” edge condition would break later and is stronger than a ground edge or polished edge glass for the scenarios investigated. The study demonstrates how a predictive tool could be employed for a better understanding of thermal breakage of window glass in fires and for design guidance

    Moodys Email from Jay Siegel Regarding Benefit For SQ1 Servicer

    Get PDF
    corecore