575 research outputs found

    Optimized exosome isolation protocol for cell culture supernatant and human plasma.

    Get PDF
    Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize a variety of exosome isolation protocols for their efficiency, yield and purity of isolated exosomes. Repeated ultracentrifugation steps can reduce the quality of exosome preparations leading to lower exosome yield. We show that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols. However, our data on using conditioned media isolated from the Non-Small-Cell Lung Cancer (NSCLC) SK-MES-1 cell line demonstrates that the choice of concentrating device can greatly impact the yield of isolated exosomes. We find that centrifuge-based concentrating methods are more appropriate than pressure-driven concentrating devices and allow the rapid isolation of exosomes from both NSCLC cell culture conditioned media and complex biological fluids. In fact to date, no protocol detailing exosome isolation utilizing current commercial methods from both cells and patient samples has been described. Utilizing tunable resistive pulse sensing and protein analysis, we provide a comparative analysis of 4 exosome isolation techniques, indicating their efficacy and preparation purity. Our results demonstrate that current precipitation protocols for the isolation of exosomes from cell culture conditioned media and plasma provide the least pure preparations of exosomes, whereas size exclusion isolation is comparable to density gradient purification of exosomes. We have identified current shortcomings in common extracellular vesicle isolation methods and provide a potential standardized method that is effective, reproducible and can be utilized for various starting materials. We believe this method will have extensive application in the growing field of extracellular vesicle research

    Quasi-Fermi Distribution and Resonant Tunneling of Quasiparticles with Fractional Charges

    Full text link
    We study the resonant tunneling of quasiparticles through an impurity between the edges of a Fractional Quantum Hall sample. We show that the one-particle momentum distribution of fractionally charged edge quasiparticles has a quasi-Fermi character. The density of states near the quasi-Fermi energy at zero temperature is singular due to the statistical interaction of quasiparticles. Another effect of this interaction is a new selection rule for the resonant tunneling of fractionally charged quasiparticles: the resonance is suppressed unless an integer number of {\em electrons} occupies the impurity. It allows a new explanation of the scaling behavior observed in the mesoscopic fluctuations of the conductivity in the FQHE.Comment: 7 pages, REVTeX 3.0, Preprint SU-ITP-93-1

    Pairing Correlations in a Generalized Hubbard Model for the Cuprates

    Full text link
    Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairing correlation functions (PCF) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next nearest-neighbor hopping t'. The vertex contributions (VC) to the PCF are significantly enhanced, relative to the t-t'-U model. The behavior of the PCF and their VC, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.Comment: 5 pages, 5 figure

    Blood pressure estimation from photoplethysmogram and electrocardiogram signals using machine learning

    Get PDF
    Blood pressure measurement is a significant part of preventive healthcare and has been widely used in clinical risk and disease management. However, conventional measurement does not provide continuous monitoring and sometimes is inconvenient with a cuff. In addition to the traditional cuff-based blood pressure measurement methods, some researchers have developed various cuff-less and noninvasive blood pressure monitoring methods based on Pulse Transit Time (PTT). Some emerging methods have employed features of either photoplethysmogram (PPG) or electrocardiogram (ECG) signals, although no studies to our knowledge have employed the combined features from both PPG and ECG signals. Therefore this study aims to investigate the performance of a predictive, machine learning blood pressure monitoring system using both PPG and ECG signals. It validates that the employment of the combination of PPG and ECG signals has improved the accuracy of the blood pressure estimation, compared with previously reported results based on PPG signal only. © 2018 Institution of Engineering and Technology. All rights reserved

    Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon

    Full text link
    Considering gravitational and gauge anomalies at the horizon, a new method that to derive Hawking radiations from black holes has been developed by Wilczek et al. In this paper, we apply this method to non-rotating and rotating Kaluza-Klein black holes with squashed horizon, respectively. For the rotating case, we found that, after the dimensional reduction, an effective U(1) gauge field is generated by an angular isometry. The results show that the gauge current and energy-momentum tensor fluxes are exactly equivalent to Hawking radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.

    The accelerated scaling attractor solution of the interacting agegraphic dark energy in Brans-Dicke theory

    Full text link
    We investigate the interacting agegraphic dark energy in Brans-Dicke theory and introduce a new series general forms of dark sector coupling. As examples, we select three cases involving a linear interaction form (Model I) and two nonlinear interaction form (Model II and Model III). Our conclusions show that the accelerated scaling attractor solutions do exist in these models. We also find that these interacting agegraphic dark energy modes are consistent with the observational data. The difference in these models is that nonlinear interaction forms give more approached evolution to the standard Λ\LambdaCDM model than the linear one. Our work implies that the nonlinear interaction forms should be payed more attention.Comment: 9 pages, 10 figures, accepted in Eur. Phys. J.

    Hospital readmissions and mortality among fee-for-service medicare patients with minor stroke or transient ischemic attack: Findings from the COMPASS cluster-randomized pragmatic trial

    Get PDF
    Background Mortality and hospital readmission rates may reflect the quality of acute and postacute stroke care. Our aim was to investigate if, compared with usual care (UC), the COMPASS-TC (Comprehensive Post-Acute Stroke Services Transitional Care) intervention (INV) resulted in lower all-cause and stroke-specific readmissions and mortality among patients with minor stroke and transient ischemic attack discharged from 40 diverse North Carolina hospitals from 2016 to 2018. Methods and Results Using Medicare fee-for-service claims linked with COMPASS cluster-randomized trial data, we performed intention-to-treat analyses for 30-day, 90-day, and 1-year unplanned all-cause and stroke-specific readmissions and all-cause mortality between INV and UC groups, with 90-day unplanned all-cause readmissions as the primary outcome. Effect estimates were determined via mixed logistic or Cox proportional hazards regression models adjusted for age, sex, race, stroke severity, stroke diagnosis, and documented history of stroke. The final analysis cohort included 1069 INV and 1193 UC patients (median age 74 years, 80% White, 52% women, 40% with transient ischemic attack) with median length of hospital stay of 2 days. The risk of unplanned all-cause readmission was similar between INV versus UC at 30 (9.9% versus 8.7%) and 90 days (19.9% versus 18.9%), respectively. No significant differences between randomization groups were seen in 1-year all-cause readmissions, stroke-specific readmissions, or mortality. Conclusions In this pragmatic trial of patients with complex minor stroke/transient ischemic attack, there was no difference in the risk of readmission or mortality with COMPASS-TC relative to UC. Our study could not conclusively determine the reason for the lack of effectiveness of the INV

    SUM_M(2)×\timesUC_C(1) Gauge Symmetry in High TcT_c Superconductivity

    Full text link
    The square lattice structure of CuO2CuO_2 layers and the strongly correlated property of electrons indicate that the high TcT_c superconductivity in cuprates can be described by a SOM_M(5) coherent pairing state in which a SUM_M(2)×\timesUC_C(1) gauge symmetry is embedded. The spin and charge fluctuations that characterize the low energy magnetic excitations in cuprates are controlled by this intrinsic SUM_M(2)×\timesUC_C(1) gauge symmetry.Comment: 4 pages Revtex fil
    corecore