6,374 research outputs found

    IDENTIFICATION OF THE ORIGINS OF ELEVATED ATMOSPHERIC MERCURY EPISODES USING A LAGRANGIAN MODELLING SYSTEM

    Get PDF
    We report the application of a receptor-oriented transport model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model, to the interpretation of hourly total gaseous mercury (TGM) concentrations at three monitoring sites in Southern Ontario during four episodes of high TGM. STILT is a Lagrangian modelling system (Lin, J.C. et al. 2003) that simulates the transport of ensembles of air parcels backward in time from an observation point to upstream locations where surface inputs of target species occurred. A complete inventory of anthropogenic and natural mercury sources were used to compute the emissions. The study was initiated by simulating the mercury concentrations in a North American domain using CMAQ-Hg, a regional Eulerian chemical transport model (CTM). The STILT model was applied to several short episodes (usually lasting for 1-4 days) in which the TGM measurements at four air quality measurement stations in Southern Ontario significantly exceeded the predictions of the CTM. The STILT analysis compared the origins of air parcels arriving during the elevated TGM episodes with those of air parcels arriving at proximal times when the measurements and the CTM predictions were both low. The results consist of the STILTā€“predicted hourly concentrations at the measurement site as well as the surface footprint where the mercury responsible for the episode was emitted. The temporal STILT prediction is in better agreement with the measured time series than that of CMAQ-Hg. We believe this is partly due to the superior ability of STILT to capture near-field influences and partly due to the spatial averaging inherent in Eulerian modelling. Also, the predicted footprint locations were reasonable, coinciding with known locations of large mercury sources during the high episodes and with cleaner areas otherwise

    Reactive oxygen species drive herpes simplex virus (HSV)-1-induced proinflammatory cytokine production by murine microglia

    Get PDF
    Abstract Background Production of reactive oxygen species (ROS) and proinflammatory cytokines by microglial cells in response to viral brain infection contributes to both pathogen clearance and neuronal damage. In the present study, we examined the effect of herpes simplex virus (HSV)-1-induced, NADPH oxidase-derived ROS in activating mitogen-activated protein kinases (MAPKs) as well as driving cytokine and chemokine expression in primary murine microglia. Methods Oxidation of 2', 7'-dichlorodihydrofluorescin diacetate (H2DCFDA) was used to measure production of intracellular ROS in microglial cell cultures following viral infection. Virus-induced cytokine and chemokine mRNA and protein levels were assessed using real-time RT-PCR and ELISA, respectively. Virus-induced phosphorylation of microglial p38 and p44/42 (ERK1/2) MAPKs was visualized using Western Blot, and levels of phospho-p38 were quantified using Fast Activated Cell-based ELISA (FACE assay). Diphenyleneiodonium (DPI) and apocynin (APO), inhibitors of NADPH oxidases, were used to investigate the role of virus-induced ROS in MAPK activation and cytokine, as well as chemokine, production. Results Levels of intracellular ROS were found to be highly elevated in primary murine microglial cells following infection with HSV and the majority of this virus-induced ROS was blocked following DPI and APO treatment. Correspondingly, inhibition of NADPH oxidase also decreased virus-induced proinflammatory cytokine and chemokine production. In addition, microglial p38 and p44/42 MAPKs were found to be phosphorylated in response to viral infection and this activation was also blocked by inhibitors of NADPH oxidase. Finally, inhibition of either of these ROS-induced signaling pathways suppressed cytokine (TNF-Ī± and IL-1Ī²) production, while chemokine (CCL2 and CXCL10) induction pathways were sensitive to inhibition of p38, but not ERK1/2 MAPK. Conclusions Data presented herein demonstrate that HSV infection induces proinflammatory responses in microglia through NADPH oxidase-dependent ROS and the activation of MAPKs.</p

    Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    Get PDF
    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues

    Targeting Accuracy of Image-Guided Radiosurgery for Intracranial Lesions: A Comparison Across Multiple Linear Accelerator Platforms

    Get PDF
    PURPOSE: To evaluate the overall positioning accuracy of image-guided intracranial radiosurgery across multiple linear accelerator platforms. METHODS: A computed tomography scan with a slice thickness of 1.0 mm was acquired of an anthropomorphic head phantom in a BrainLAB U-frame mask. The phantom was embedded with three 5-mm diameter tungsten ball bearings, simulating a central, a left, and an anterior cranial lesion. The ball bearings were positioned to radiation isocenter under ExacTrac X-ray or cone-beam computed tomography image guidance on 3 Linacs: (1) ExacTrac X-ray localization on a Novalis Tx; (2) cone-beam computed tomography localization on the Novalis Tx; (3) cone-beam computed tomography localization on a TrueBeam; and (4) cone-beam computed tomography localization on an Edge. Each ball bearing was positioned 5 times to the radiation isocenter with different initial setup error following the 4 image guidance procedures on the 3 Linacs, and the mean (Āµ) and one standard deviation (Ļƒ) of the residual error were compared. RESULTS: Averaged overall 3 ball bearing locations, the vector length of the residual setup error in mm (Āµ Ā± Ļƒ) was 0.6 Ā± 0.2, 1.0 Ā± 0.5, 0.2 Ā± 0.1, and 0.3 Ā± 0.1 on ExacTrac X-ray localization on a Novalis Tx, cone-beam computed tomography localization on the Novalis Tx, cone-beam computed tomography localization on a TrueBeam, and cone-beam computed tomography localization on an Edge, with their range in mm being 0.4 to 1.1, 0.4 to 1.9, 0.1 to 0.5, and 0.2 to 0.6, respectively. The congruence between imaging and radiation isocenters in mm was 0.6 Ā± 0.1, 0.7 Ā± 0.1, 0.3 Ā± 0.1, and 0.2 Ā± 0.1, for the 4 systems, respectively. CONCLUSIONS: Targeting accuracy comparable to frame-based stereotactic radiosurgery can be achieved with image-guided intracranial stereotactic radiosurgery treatment

    A human antibody against Zika virus crosslinks the E protein to prevent infection

    Get PDF
    The recent Zika virus (ZIKV) epidemic has been linked to unusual and severe clinical manifestations including microcephaly in fetuses of infected pregnant women and Guillian-BarrĆ© syndrome in adults. Neutralizing antibodies present a possible therapeutic approach to prevent and control ZIKV infection. Here we present a 6.2ā€‰Ć… resolution three-dimensional cryo-electron microscopy (cryoEM) structure of an infectious ZIKV (strain H/PF/2013, French Polynesia) in complex with the Fab fragment of a highly therapeutic and neutralizing human monoclonal antibody, ZIKV-117. The antibody had been shown to prevent fetal infection and demise in mice. The structure shows that ZIKV-117 Fabs cross-link the monomers within the surface E glycoprotein dimers as well as between neighbouring dimers, thus preventing the reorganization of E protein monomers into fusogenic trimers in the acidic environment of endosomes
    • ā€¦
    corecore