811 research outputs found

    Img2Logo:Generating Golden Ratio Logos from Images

    Get PDF
    Logos are one of the most important graphic design forms that use an abstracted shape to clearly represent the spirit of a community. Among various styles of abstraction, a particular golden-ratio design is frequently employed by designers to create a concise and regular logo. In this context, designers utilize a set of circular arcs with golden ratios (i.e., all arcs are taken from circles whose radii form a geometric series based on the golden ratio) as the design elements to manually approximate a target shape. This error-prone process requires a large amount of time and effort, posing a significant challenge for design space exploration. In this work, we present a novel computational framework that can automatically generate golden ratio logo abstractions from an input image. Our framework is based on a set of carefully identified design principles and a constrained optimization formulation respecting these principles. We also propose a progressive approach that can efficiently solve the optimization problem, resulting in a sequence of abstractions that approximate the input at decreasing levels of detail. We evaluate our work by testing on images with different formats including real photos, clip arts, and line drawings. We also extensively validate the key components and compare our results with manual results by designers to demonstrate the effectiveness of our framework. Moreover, our framework can largely benefit design space exploration via easy specification of design parameters such as abstraction levels, golden circle sizes, etc

    Realtime object extraction and tracking with an active camera using image mosaics

    Get PDF
    [[abstract]]Moving object extraction plays a key role in applications such as object-based videoconference, surveillance, and so on. The dimculties of moving object segmentation lie in the fact that physical objects are normally not homogeneous with to low-level features and it's usually tough to segment them accnrately and efficiently. Object segmentation based on prestored background information has proved to be effective and efficient in several applications such as videophone, video conferencing, and surveillance, etc. The previous works, however, were mainly concentrated on object segmentation with a static camera and in a stationary background. In this paper, we propose a robust and fast segmentation algorithm and a reliable tracking strategy without knowing the shape of the object in advance. The proposed system can real-time extract the foreground from the background and track the moving object with an active (pan-tilt) camera such that the moving object always stays around the center of images.[[fileno]]2030144030033[[department]]電機工程學

    An Obstacle-Free and Power Efficient Deployment Algorithm for Wireless Sensor Networks

    Get PDF
    [[abstract]]This paper proposes a robot-deployment algorithm that overcomes unpredicted obstacles and employs full-coverage deployment with a minimal number of sensor nodes. Without the location information, node placement and spiral movement policies are proposed for the robot to deploy sensors efficiently to achieve power conservation and full coverage, while an obstacle surrounding movement policy is proposed to reduce the impacts of an obstacle upon deployment. Simulation results reveal that the proposed robot-deployment algorithm outperforms most existing robot-deployment mechanisms in power conservation and obstacle resistance and therefore achieves a better deployment performance.[[notice]]補正完

    AN ELECTROMAGNETIC ACTUATOR IN LAB-ON-A-CHIP SYSTEMS

    Get PDF
    ABSTRACT A novel technique for the fabrication of electromagnetic micro actuators was proposed and a prototype was designed and fabricated in this study. The constituent parts of the designed actuator are comprised of the diaphragm, the micro coils, and the magnet. When an electrical current was applied to the micro coils, the magnetic force between the magnet and the coil is produced, causes the diaphragm to deflect and becomes the source of actuation. The fabrication process of the actuator combines Optical Lithography, Electron Beam Evaporation, and Electroplating. The structure of the actuating device uses PDMS as the vibrating diaphragm and electroplated copper as the coils. The diaphragm deflection can be regulated by varying the electrical current passed through the micro coil and hence the actuating effects can be controlled. The experimental results show that the maximum diaphragm deflection within elastic limits is 150 m at an electrical current of 0.6 A for a micro coil of 100 m line width. The micro electromagnetic actuator proposed in this study is easily fabricated and is readily integrated with Lab-on-a-Chip systems due to its planar structure

    Recombinant VP1, an Akt Inhibitor, Suppresses Progression of Hepatocellular Carcinoma by Inducing Apoptosis and Modulation of CCL2 Production

    Get PDF
    BACKGROUND: The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here, we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of hepatocellular carcinoma (HCC), one of the most common human cancers worldwide. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with rVP1 inhibited cell proliferation in two murine HCC cell lines, BNL and Hepa1-6, with IC₅₀ values in the range of 0.1-0.2 µM. rVP1 also induced apoptosis in these cells, which was mediated by Akt deactivation and dissociation of Ku70-Bax, and resulted in conformational changes and mitochondrial translocation of Bax, leading to the activation of caspases-9, -3 and -7. Treatment with 0.025 µM rVP1, which did not affect the viability of normal hepatocytes, suppressed cell migration and invasion via attenuating CCL2 production. The production of CCL2 was modulated by Akt-dependent NF-κB activation that was decreased after rVP1 treatment. The in vivo antitumor effects of rVP1 were assessed in both subcutaneous and orthotopic mouse models of HCC in immune-competent BALB/c mice. Intratumoral delivery of rVP1 inhibited subcutaneous tumor growth as a result of increased apoptosis. Intravenous administration of rVP1 in an orthotopic HCC model suppressed tumor growth, inhibited intra-hepatic metastasis, and prolonged survival. Furthermore, a decrease in the serum level of CCL2 was observed in rVP1-treated mice. CONCLUSIONS/SIGNIFICANCE: The data presented herein suggest that, via inhibiting Akt phosphorylation, rVP1 suppresses the growth, migration, and invasion of murine HCC cells by inducing apoptosis and attenuating CCL2 production both in vitro and in vivo. Recombinant protein VP1 thus has the potential to be developed as a new therapeutic agent for HCC

    Ankle-Brachial Index Is a Powerful Predictor of Renal Outcome and Cardiovascular Events in Patients with Chronic Kidney Disease

    Get PDF
    Ankle-brachial index (ABI) is an accurate tool to diagnose peripheral arterial disease. The aim of this study was to evaluate whether ABI is also a good predictor of renal outcome and cardiovascular events in patients with chronic kidney disease (CKD). We enrolled 436 patients with stage 3–5 CKD who had not been undergoing dialysis. Patients were stratified into two groups according to the ABI value with a cut point of 0.9. The composite renal outcome, including doubling of serum creatinine level and commencement of dialysis, and the incidence of cardiovascular events were compared between the two groups. After a median follow-up period of 13 months, the lower ABI group had a poorer composite renal outcome (OR = 2.719, P = 0.015) and a higher incidence of cardiovascular events (OR = 3.260, P = 0.001). Our findings illustrated that ABI is a powerful predictor of cardiovascular events and renal outcome in patients with CKD
    corecore