623 research outputs found

    Impact of the Neutrino Magnetic Moment on the Neutrino Fluxes and the Electron Fraction in core-collapse Supernovae

    Full text link
    We explore the effect of the neutrino magnetic moment on neutrino scattering with matter in a core-collapse Supernova. We study the impact both on the neutrino fluxes and on the electron fraction. We find that sizeable modifications require very large magnetic moments both for Dirac and Majorana neutrinos.Comment: 7 pages, 6 figure

    Dynamic effective elasticity of melanoma cells under shear and elongational flow confirms estimation from force spectroscopy

    Get PDF
    The detection and enrichment of circulating melanoma cells is a challenge, as the cells are very heterogeneous in terms of their biomechanical properties and surface markers. In addition, there is a lack of valid and reliable biomarkers predicting progress and therapeutic response. In this study, we analyze the elasticity of A375 melanoma cells by applying force spectroscopy and a microfluidic method. To identify and eventually separate freely circulating tumor cells, it is crucial to know their physical properties precisely. First, we use standard AFM force spectroscopy, where the elasticity of the cells is calculated from indentation with a pyramidal tip. To extend the limits of the measurements with a tip, we then use cantilevers without a tip to apply force over a larger area of the cells. The resulting Young’s moduli are slightly lower and vary less without the tip, presumably because of the spatial inhomogeneity of the cells. Finally, we implement our microfluidic method: we measure single cell elasticity by analyzing their deformation in high-speed micrographs while passing a stenosis. Combining the force field and the change in shape provides the basis for a stress–strain diagram. The results from the microfluidic deformation analysis were well in accordance with the results from force spectroscopy. The microfluidic method, however, provides advantages over conventional methods, as it is less invasive and less likely to harm the cell during the measurement. The whole cell is measured as one entity without having contact to a stiff substrate, while force spectroscopy is limited to the contact area of the tip, and in some cases dependent of the cell substrate interaction. Consequently, microfluidic deformation analysis allows us to predict the overall elastic behavior of the whole, inhomogeneous cell in three-dimensional force fields. This method may contribute to improve the detection of circulating melanoma cells in the clinical practice

    Dynamic optical coherence tomography. a non-invasive imaging tool for the distinction of nevi and melanomas

    Get PDF
    Along with the rising melanoma incidence in recent decades and bad prognoses resulting from late diagnoses, distinguishing between benign and malignant melanocytic lesions has become essential. Unclear cases may require the aid of non-invasive imaging to reduce unnecessary biopsies. This multicentric, case-control study evaluated the potential of dynamic optical coherence tomography (D-OCT) to identify distinguishing microvascular features in nevi. A total of 167 nevi, including dysplastic ones, on 130 participants of all ages and sexes were examined by D-OCT and dermoscopy with a histological reference. Three blinded analyzers evaluated the lesions. Then, we compared the features to those in 159 melanomas of a prior D-OCT study and determined if a differential diagnosis was possible. We identified specific microvascular features in nevi and a differential diagnosis of melanomas and nevi was achieved with excellent predictive values. We conclude that D-OCT overcomes OCT´s inability to distinguish melanocytic lesions based on its focus on microvascularization. To determine if an addition to the gold standard of a clinical-dermoscopic examination improves the diagnosis of unclear lesions, further studies, including a larger sample of dysplastic nevi and artificial intelligence, should be conducted

    Neutron scattering study of transverse magnetism

    Get PDF
    In order to clarify the nature of the additional phase transition at H1 (T) \u3c Hc (T) of the layered antiferromagnetic (AF) insulator FeBr2 as found by Aruga Katori et al. (1996) we measured the intensity of different Bragg-peaks in different scattering geometries. Transverse AF ordering is observed in both AF phases, AFI and AFII. Its order parameter exhibits a peak at T1 = T (H1) in temperature scans and does not vanish in zero field. Possible origins of the step-like increase of the transverse ferromagnetic ordering induced by a weak in-plane field component when entering AFI below T1 are discussed

    Low-cost UAV monitoring: insights into seasonal volumetric changes of an oyster reef in the German Wadden Sea

    Get PDF
    This study aims to quantify the dimensions of an oyster reef over two years via low-cost unoccupied aerial vehicle (UAV) monitoring and to examine the seasonal volumetric changes. No current study investigated via UAV monitoring the seasonal changes of the reef-building Pacific oyster (Magallana gigas) in the German Wadden Sea, considering the uncertainty of measurements and processing. Previous studies have concentrated on classifying and mapping smaller oyster reefs using terrestrial laser scanning (TLS) or hyperspectral remote sensing data recorded by UAVs or satellites. This study employed a consumer-grade UAV with a low spectral resolution to semi-annually record the reef dimensions for generating digital elevation models (DEM) and orthomosaics via structure from motion (SfM), enabling identifying oysters. The machine learning algorithm Random Forest (RF) proved to be an accurate classifier to identify oysters in low-spectral UAV data. Based on the classified data, the reef was spatially analysed, and digital elevation models of difference (DoDs) were used to estimate the volumetric changes. The introduction of propagation errors supported determining the uncertainty of the vertical and volumetric changes with a confidence level of 68% and 95%, highlighting the significant change detection. The results indicate a volume increase of 22 m³ and a loss of 2 m³ in the study period, considering a confidence level of 95%. In particular, the reef lost an area between September 2020 and March 2021, when the reef was exposed to air for more than ten hours. The reef top elevation increased from -15.5 ± 3.6 cm NHN in March 2020 to -14.8 ± 3.9 cm NHN in March 2022, but the study could not determine a consistent annual growth rate. As long as the environmental and hydrodynamic conditions are given, the reef is expected to continue growing on higher elevations of tidal flats, only limited by air exposure. The growth rates suggest a further reef expansion, resulting in an increased roughness surface area that contributes to flow damping and altering sedimentation processes. Further studies are proposed to investigate the volumetric changes and limiting stressors, providing robust evidence regarding the influence of air exposure on reef loss

    Oyster Reef Surfaces in the Central Wadden Sea: Intra-Reef Classification and Comprehensive Statistical Description

    Get PDF
    The Pacific oyster (Magallana gigas) is an invasive species in the Wadden Sea transforming parts of it permanently. M. gigas, as an ecosystem engineer, builds reef structures that are characterized by highly complex and variable surfaces consisting of densely packed, sharp-edged individuals connected with cement-like bonds. To investigate the interactions between reef structure, shape and formation and wave as well as tidal currents, an understanding of the surface roughness is essential. This work reports on observations of oyster reefs for which seven new structural classes (Central Reef, Transitional Zone, Cluster I, Cluster II, Patch I, Patch II, and Garland) are proposed. For each class, high resolution Digital Elevation Models (DEMs) have been elaborated based on Structure-from-Motion (SfM) photogrammetry and analyzed using spatial statistics. By determining probability density functions (PDFs), vertical porosity distributions, abundances, orientations and second-order structure functions (SSFs), topographical parameters that influence the hydraulic bed roughness have been determined. The results suggest, that by applying the structural classification and their distinct topographical roughness parameters, the oyster reef surfaces can be described appropriately accounting for their complexity. The roughness accounts to a total roughness height kt = 103 ± 15 mm and root-mean-square roughness height krms = 23 ± 5 mm. These values were found similar across all structural classes, yet the shape of the PDFs reveal differences. With decreasing abundance, the distributions become more positively skewed and are characterized by more extreme outliers. This is reflected in the higher statistical moments, as the skewness ranges between Sk = 0.4–2.1 and the kurtosis between Ku = 2.2–11.5. The analysis of the orientations and the SSFs confirms anisotropic behavior across all structural classes. Further, the SSFs reveal the oyster shells as significant roughness elements with exception of Cluster I and II, where the clusters are identified as significant roughness elements. The provided set of topographical roughness parameters enhances the knowledge of oyster reef surfaces and gives insights into the interactions between biogenic structure and surrounding hydrodynamics. The new intra-reef classification allows for more accurate determination of the overall roughness as well as the population dynamics of the habitat forming oyster. Combined with hydraulic measurements, the results can be used to estimate the hydraulic bed roughness induced by the oyster reef surfaces. Copyright © 2022 Hitzegrad, Brohmann, Pfennings, Hoffmann, Eilrich, Paul, Welzel, Schlurmann, Aberle, Wehrmann and Goseberg

    Low energy neutrino scattering measurements at future Spallation Source facilities

    Full text link
    In the future several Spallation Source facilities will be available worldwide. Spallation Sources produce large amount of neutrinos from decay-at-rest muons and thus can be well adapted to accommodate state-of-the-art neutrino experiments. In this paper low energy neutrino scattering experiments that can be performed at such facilities are reviewed. Estimation of expected event rates are given for several nuclei, electrons and protons at a detector located close to the source. A neutrino program at Spallation Sources comprises neutrino-nucleus cross section measurements relevant for neutrino and core-collapse supernova physics, electroweak tests and lepton-flavor violation searches.Comment: 12 pages, 4 figures, 5 table

    Oyster Reef Surfaces in the Central Wadden Sea: Intra-Reef Classification and Comprehensive Statistical Description

    Get PDF
    The Pacific oyster (Magallana gigas) is an invasive species in the Wadden Sea transforming parts of it permanently. M. gigas, as an ecosystem engineer, builds reef structures that are characterized by highly complex and variable surfaces consisting of densely packed, sharp-edged individuals connected with cement-like bonds. To investigate the interactions between reef structure, shape and formation and wave as well as tidal currents, an understanding of the surface roughness is essential. This work reports on observations of oyster reefs for which seven new structural classes (Central Reef, Transitional Zone, Cluster I, Cluster II, Patch I, Patch II, and Garland) are proposed. For each class, high resolution Digital Elevation Models (DEMs) have been elaborated based on Structure-from-Motion (SfM) photogrammetry and analyzed using spatial statistics. By determining probability density functions (PDFs), vertical porosity distributions, abundances, orientations and second-order structure functions (SSFs), topographical parameters that influence the hydraulic bed roughness have been determined. The results suggest, that by applying the structural classification and their distinct topographical roughness parameters, the oyster reef surfaces can be described appropriately accounting for their complexity. The roughness accounts to a total roughness height kt = 103 ± 15 mm and root-mean-square roughness height krms = 23 ± 5 mm. These values were found similar across all structural classes, yet the shape of the PDFs reveal differences. With decreasing abundance, the distributions become more positively skewed and are characterized by more extreme outliers. This is reflected in the higher statistical moments, as the skewness ranges between Sk = 0.4–2.1 and the kurtosis between Ku = 2.2–11.5. The analysis of the orientations and the SSFs confirms anisotropic behavior across all structural classes. Further, the SSFs reveal the oyster shells as significant roughness elements with exception of Cluster I and II, where the clusters are identified as significant roughness elements. The provided set of topographical roughness parameters enhances the knowledge of oyster reef surfaces and gives insights into the interactions between biogenic structure and surrounding hydrodynamics. The new intra-reef classification allows for more accurate determination of the overall roughness as well as the population dynamics of the habitat forming oyster. Combined with hydraulic measurements, the results can be used to estimate the hydraulic bed roughness induced by the oyster reef surfaces. Copyright © 2022 Hitzegrad, Brohmann, Pfennings, Hoffmann, Eilrich, Paul, Welzel, Schlurmann, Aberle, Wehrmann and Goseberg
    • …
    corecore