1,088 research outputs found

    The interstellar D1 line at high resolution

    Get PDF
    Observations at a resolving power or a velocity resolution are reported of the interstellar D(sub 1) line of Na I in the spectra of gamma Cas, delta Ori, epsilon Ori, pi Sco, delta Cyg, and alpha Cyg. An echelle grating was used in a double-pass configuration with a CCD detector in the coude spectrograph of the 2.7 m reflector at McDonald Observatory. At least 42 kinematically distinct clouds are detected along the light paths to the five more distant stars, in addition to a single cloud seen toward delta Cyg. The absorption lines arising in 13 of the clouds are sufficiently narrow and unblended to reveal clearly resolved hyperfine structure components split by 1.05 km/s. An additional 13 clouds apparently show comparably narrow, but more strongly blended, lines. For each individual cloud, upper limits T(sub max) and (v sub t)(sub max) on the temperature and the turbulent velocity, respectively, are derived by fitting the observed lines with theoretical absorption profiles

    Density Variations over Subparsec Scales in Diffuse Molecular Gas

    Get PDF
    We present high-resolution observations of interstellar CN, CH, CH^{+}, \ion{Ca}{1}, and \ion{Ca}{2} absorption lines toward the multiple star systems HD206267 and HD217035. Substantial variations in CN absorption are observed among three sight lines of HD206267, which are separated by distances of order 10,000 AU; smaller differences are seen for CH, CH^{+}, and \ion{Ca}{1}. Gas densities for individual velocity components are inferred from a chemical model, independent of assumptions about cloud shape. While the component densities can differ by factors of 5.0 between adjacent sightlines, the densities are always less than 5000 cm^{-3}. Calculations show that the derived density contrasts are not sensitive to the temperature or reaction rates used in the chemical model. A large difference in the CH^{+} profiles (a factor of 2 in column density) is seen in the lower density gas toward HD217035.Comment: 9 pages, 2 figures. Accepted for publication in ApJ

    OH+ in Diffuse Molecular Clouds

    Get PDF
    Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds.Comment: 15 pages, 4 figures, to appear in ApJ Letter

    Variable Interstellar Absorption toward the Halo Star HD 219188 - Implications for Small-Scale Interstellar Structure

    Get PDF
    Within the last 10 years, strong, narrow Na I absorption has appeared at v_sun ~ -38 km/s toward the halo star HD 219188; that absorption has continued to strengthen, by a factor 2-3, over the past three years. The line of sight appears to be moving into/through a relatively cold, quiescent intermediate velocity (IV) cloud, due to the 13 mas/yr proper motion of HD 219188; the variations in Na I probe length scales of 2-38 AU/yr. UV spectra obtained with the HST GHRS in 1994-1995 suggest N(H_tot) ~ 4.8 X 10^{17} cm^{-2}, ``halo cloud'' depletions, n_H ~ 25 cm^{-3}, and n_e ~ 0.85-6.2 cm^{-3} (if T ~ 100 K) for the portion of the IV cloud sampled at that time. The relatively high fractional ionization, n_e/n_H >~ 0.034, implies that hydrogen must be partially ionized. The N(Na I)/N(H_tot) ratio is very high; in this case, the variations in Na I do not imply large local pressures or densities.Comment: 12 pages; aastex; to appear in ApJ

    Monitoring the Variable Interstellar Absorption toward HD 219188 with HST/STIS

    Full text link
    We discuss the results of continued spectroscopic monitoring of the variable intermediate-velocity (IV) absorption at v = -38 km/s toward HD 219188. After reaching maxima in mid-2000, the column densities of both Na I and Ca II in that IV component declined by factors >= 2 by the end of 2006. Comparisons between HST/STIS echelle spectra obtained in 2001, 2003, and 2004 and HST/GHRS echelle spectra obtained in 1994--1995 indicate the following: (1) The absorption from the dominant species S II, O I, Si II, and Fe II is roughly constant in all four sets of spectra -- suggesting that the total N(H) and the (mild) depletions have not changed significantly over a period of nearly ten years. (2) The column densities of the trace species C I (both ground and excited fine-structure states) and of the excited state C II* all increased by factors of 2--5 between 1995 and 2001 -- implying increases in the hydrogen density n_H (from about 20 cm^{-3} to about 45 cm^{-3}) and in the electron density n_e (by a factor >= 3) over that 6-year period. (3) The column densities of C I and C II* -- and the corresponding inferred n_H and n_e -- then decreased slightly between 2001 and 2004. (4) The changes in C I and C II* are very similar to those seen for Na I and Ca II. The relatively low total N(H) and the modest n_H suggest that the -38 km/s cloud toward HD 219188 is not a very dense knot or filament. Partial ionization of hydrogen appears to be responsible for the enhanced abundances of Na I, C I, Ca II, and C II*. In this case, the variations in those species appear to reflect differences in density and ionization [and not N(H)] over scales of tens of AU.Comment: 33 pages, 6 figures, aastex, accepted to Ap

    Aggressive Middle--Class Delinquent

    Get PDF

    Key signal contributions in photothermal deflection spectroscopy

    Get PDF
    We report on key signal contributions in photothermal deflection spectroscopy (PDS) of semiconductors at photon energies below the bandgap energy and show how to extract the actual absorption properties from the measurement data. To this end, we establish a rigorous computation scheme for the deflection signal including semi-analytic raytracing to analyze the underlying physical effects. The computation takes into account linear and nonlinear absorption processes affecting the refractive index and thus leading to a deflection of the probe beam. We find that beside the linear mirage effect, nonlinear absorption mechanisms make a substantial contribution to the signal for strongly focussed pump beams and sample materials with high two-photon absorption coefficients. For example, the measured quadratic absorption contribution exceeds 5% at a pump beam intensity of about 1.3×105  W/cm2{1.3}\times{10^{5}}\;{W}/{cm^{2}} in Si and at 5×104  W/cm2{5}\times{10^{4}}\;{W}/{cm^{2}} in GaAs. In addition, our method also includes thermal expansion effects as well as spatial gradients of the attenuation properties. We demonstrate that these effects result in an additional deflection contribution which substantially depends on the distance of the photodetector from the readout point. This distance dependent contribution enhances the surface related PDS signal up to two orders of magnitude and may be misinterpreted as surface absorption if not corrected in the analysis of the measurement data. We verify these findings by PDS measurements on crystalline silicon at a wavelength of 1550 nm and provide guidelines how to extract the actual attenuation coefficient from the PDS signal.Comment: 10 pages, 16 figures, submitted to Journal of Applied Physiv
    • …
    corecore