33 research outputs found
How Coupling Determines the Entrainment of Circadian Clocks
Autonomous circadian clocks drive daily rhythms in physiology and behaviour.
A network of coupled neurons, the suprachiasmatic nucleus (SCN), serves as a
robust self-sustained circadian pacemaker. Synchronization of this timer to the
environmental light-dark cycle is crucial for an organism's fitness. In a
recent theoretical and experimental study it was shown that coupling governs
the entrainment range of circadian clocks. We apply the theory of coupled
oscillators to analyse how diffusive and mean-field coupling affects the
entrainment range of interacting cells. Mean-field coupling leads to amplitude
expansion of weak oscillators and, as a result, reduces the entrainment range.
We also show that coupling determines the rigidity of the synchronized SCN
network, i.e. the relaxation rates upon perturbation. %(Floquet exponents). Our
simulations and analytical calculations using generic oscillator models help to
elucidate how coupling determines the entrainment of the SCN. Our theoretical
framework helps to interpret experimental data
Patient satisfaction in shoulder arthroscopy: telemedicine versus clinic follow-up visits
Background The use of telemedicine for postoperative visits is increasing, especially in rural areas. Few studies have investigated its use for arthroscopic shoulder patients. This study aims to evaluate patient satisfaction with telemedicine for postoperative clinic visits following arthroscopic shoulder procedures in a rural setting. Methods Patients were prospectively enrolled using the following exclusion criteria: 0.05). Patient satisfaction did not vary significantly based on care by the surgeon, concerns being addressed, thoroughness of visit, overall clinical assessment at a prior visit, and improvements in pain and physical function (all p>0.05). Among patients who opted out of telemedicine visits, the most common reason was a preference to meet in-person but these patients agreed that telemedicine visits are a good idea. Conclusions Regardless of type of follow-up, individuals reported similar levels of satisfaction with treatment during the visit and improvements in pain and physical function
Geographical and climatic limits of needle types of one- and two-needled pinyon pines
Aim The geographical extent and climatic tolerances of one- and two-needled pinyon pines (Pinus subsect. Cembroides) are the focus of questions in taxonomy, palaeoclimatology and modelling of future distributions. The identification of these pines, traditionally classified by one- versus two-needled fascicles, is complicated by populations with both one- and two-needled fascicles on the same tree, and the description of two more recently described one-needled varieties: the fallax-type and californiarum-type. Because previous studies have suggested correlations between needle anatomy and climate, including anatomical plasticity reflecting annual precipitation, we approached this study at the level of the anatomy of individual pine needles rather than species.
Location Western North America.
Methods We synthesized available and new data from field and herbarium collections of needles to compile maps of their current distributions across western North America. Annual frequencies of needle types were compared with local precipitation histories for some stands. Historical North American climates were modeled on a c. 1-km grid using monthly temperature and precipitation values. A geospatial model (ClimLim), which analyses the effect of climate modulated physiological and ecosystem processes, was used to rank the importance of seasonal climate variables in limiting the distributions of anatomical needle types.
Results The pinyon needles were classified into four distinct types based upon the number of needles per fascicle, needle thickness and the number of stomatal rows and resin canals. The individual needles fit well into four categories of needle types, whereas some trees exhibit a mixture of two needle types. Trees from central Arizona containing a mixture of Pinus edulis and fallax-type needles increased their percentage of fallax-type needles following dry years. All four needle types occupy broader geographical regions with distinctive precipitation regimes. Pinus monophylla and californiarum-type needles occur in regions with high winter precipitation. Pinus edulis and fallax-type needles are found in regions with high monsoon precipitation. Areas supporting californiarum-type and fallax-type needle distributions are additionally characterized by a more extreme May–June drought.
Main conclusions These pinyon needle types seem to reflect the amount and seasonality of precipitation. The single needle fascicle characterizing the fallax type may be an adaptation to early summer or periodic drought, while the single needle of Pinus monophylla may be an adaptation to summer–autumn drought. Although the needles fit into four distinct categories, the parent trees are sometimes less easily classified, especially near their ancestral Pleistocene ranges in the Mojave and northern Sonoran deserts. The abundance of trees with both one- and two-needled fascicles in the zones between P. monophylla, P. edulis and fallax-type populations suggest that needle fascicle number is an unreliable characteristic for species classification. Disregarding needle fascicle number, the fallax-type needles are nearly identical to P. edulis, supporting Little’s (1968) initial classification of these trees as P. edulis var. fallax, while the californiarum-type needles have a distinctive morphology supporting Bailey’s (1987) classification of this tree as Pinus californiarum
HLA class-I and class-II allele frequencies and two-locus haplotypes in Melanesians of Vanuatu and New Caledonia
HLA class-I and class-II allele frequencies and two-locus haplotypes were examined in 367 unrelated Melanesians living on the islands of Vanuatu and New Caledonia. Diversity at all HLA class-I and class-II loci was relatively limited. In class-I loci, three HLA-A allelic groups (HLA-A*24, HLA-A*34 and HLA-A*11), seven HLA-B alleles or allelic groups (HLA-B*1506, HLA-B*5602, HLA-B*13, HLA-B*5601, HLA-B*4001, HLA-B*4002 and HLA-B*2704) and four HLA-C alleles or allelic groups (HLA-Cw*04, HLA-Cw*01, HLA-Cw*0702 and HLA-Cw*15) constituted more than 90% of the alleles observed. In the class-II loci, four HLA-DRB1 alleles (HLA-DRB1*15, HLA-DRB1*11, HLA-DRB1*04 and HLA-DRB1*16), three HLA-DRB3-5 alleles (HLA-DRB3*02, HLA-DRB4*01 and HLA-DRB5*01/02) and five HLA-DQB1 alleles (HLA-DQB1*0301, HLA-DQB1*04, HLA-DQB1*05, HLA-DQB1*0601 and HLA-DQB1*0602) constituted over 93, 97 and 98% of the alleles observed, respectively. Homozygosity showed significant departures from expected levels for neutrality based on allele frequency (i.e. excess diversity) at the HLA-B, HLA-Cw, HLA-DQB1 and HLA-DRB3/5 loci on some islands. The locus with the strongest departure from neutrality was HLA-DQB1, homozygosity being significantly lower than expected on all islands except New Caledonia. No consistent pattern was demonstrated for any HLA locus in relation to malaria endemicity
The ultraviolet survey of the Gould Belt: general properties of the Taurus star forming region
The Gould Belt is the local superassociation of star formation. The age of the Belt is some few 10(7) yr, henceforth, its population is dominated by luminous young OB associations and low mass pre-main sequence stars. Attempts to unveil the low mass population have been run making use of the ROSAT all-sky survey. The all sky ultraviolet survey run by the GALaxy Evolution eXplorer (GALEX) maps several regions in the Belt. In this contribution, we present the preliminary analysis of the UV stellar population towards the Taurus region, one of the nearest and best studied regions of star formation