6 research outputs found

    Atlases for Select Portland Metropolitan Watersheds

    Get PDF
    The primary purpose of this project is to promote planning on a watershed basis in the Portland Metropolitan area. We intend to support Metro\u27s Regional Planning Framework process by encouraging a stewardship ethic based on watershed considerations. Atlases characterizing several of Portland\u27s watersheds will provide specific information to three audiences: planners, community activists, and decision makers. The atlases will provide an information base upon which watershed management processes can be built

    Optimization of Cryo-Electron Microscopy for Quantitative Analysis of Lipid Bilayers

    Get PDF
    Cryogenic electron microscopy (cryo-EM) is among the most powerful tools available for interrogating nanoscale structure of biological materials. We recently showed that cryo-EM can be used to measure the bilayer thickness of lipid vesicles and biological membranes with subangstrom precision, resulting in the direct visualization of nanoscopic domains of different thickness in multicomponent lipid mixtures and giant plasma membrane vesicles. Despite the great potential of cryo-EM for revealing the lateral organization of biomembranes, a large parameter space of experimental conditions remains to be optimized. Here, we systematically investigate the influence of instrument parameters and image postprocessing steps on the ability to accurately measure bilayer thickness and discriminate regions of different thickness within unilamellar liposomes. This unique application of cryo-EM places particular demands on image acquisition optimization and analysis due to the facts that 1) each vesicle is a different size with different curvature, 2) the domains in each vesicle can be heterogenous in size, and 3) the random orientation of vesicles amplifies the variability of domain size in projected images. We also demonstrate a spatial autocorrelation analysis to extract additional information about lateral heterogeneity

    C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response

    Get PDF
    Mosquitoes rely on RNA interference (RNAi) as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV) infection in C6/36 (Aedes albopictus) cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses). Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae), Sindbis virus (SINV, Togaviridae) and La Crosse virus (LACV, Bunyaviridae) and total RNA recovered from cell lysates. Small RNA (sRNA) libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs) from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26–27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand) and distribution (position along viral genome) of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney) cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level
    corecore